liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy level alignment and chemical interaction at Alq3/Co interfaces for organic spintronic devices
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry .
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry .
Show others and affiliations
2008 (English)Article in journal (Refereed) Published
Abstract [en]

The electronic structure of the interface between tris(8-hydroxyquinoline) aluminum (Alq3) and cobalt was investigated by means of photoelectron spectroscopy. As demonstrated recently, this interface is characterized by efficient spin injection in organic spintronic devices. A strong interface dipole that reduces the effective work function of cobalt by about 1.5 eV was observed. This leads to a large barrier for hole injection into the highest occupied molecular-orbital (HOMO) level of 2.1 eV, in agreement with a previously proposed model based on electron transport in Co-Alq3 -La0.7 Sr0.3 MnO3 spin valves. Further experimental results indicate that chemical interaction occurs between the Alq3 molecules and the cobalt atoms, while the latter penetrate the Alq3 layer upon vapor deposition of Co atoms. The data presented lead to significant progress in understanding the electronic structure of the Co-on- Alq3 interface and represent a significant step toward the definition of the interface parameters for the efficient spin injection in Alq3 based spin valves. © 2008 The American Physical Society.

Place, publisher, year, edition, pages
2008. Vol. 78, no 4
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-44378DOI: 10.1103/PhysRevB.78.045208Local ID: 76426OAI: oai:DiVA.org:liu-44378DiVA: diva2:265240
Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2011-01-10

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Zhan, YiqiangLi, FenghongFahlman, MatsSalaneck, William R

Search in DiVA

By author/editor
Zhan, YiqiangLi, FenghongFahlman, MatsSalaneck, William R
By organisation
The Institute of TechnologySurface Physics and Chemistry
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 318 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf