liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Efficient Triangulation Based on 3D Euclidean Optimization
Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Computer Vision.
2008 (English)In: International Conference on Pattern Recognition (ICPR), IEEE , 2008, p. 1-4Conference paper, Published paper (Refereed)
Abstract [en]

This paper presents a method for triangulation of 3D points given their projections in two images. Recent results show that the triangulation mapping can be represented as a linear operator K applied to the outer product of corresponding homogeneous image coordinates, leading to a triangulation of very low computational complexity. K can be determined from the camera matrices, together with a so-called blind plane, but we show here that it can be further refined by a process similar to Gold Standard methods for camera matrix estimation. In particular it is demonstrated that K can be adjusted to minimize the Euclidean L, residual 3D error, bringing it down to the same level as the optimal triangulation by Hartley and Sturm. The resulting K optimally fits a set of 2D+2D+3D data where the error is measured in the 3D space. Assuming that this calibration set is representative for a particular application, where later only the 2D points are known, this K can be used for triangulation of 3D points in an optimal way, which in addition is very efficient since the optimization need only be made once for the point set. The refinement of K is made by iteratively reducing errors in the 3D and 2D domains, respectively. Experiments on real data suggests that very few iterations are needed to accomplish useful results.

Place, publisher, year, edition, pages
IEEE , 2008. p. 1-4
Series
IEEE Computer Society, ISSN 1051-4651
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-44912DOI: 10.1109/ICPR.2008.4760981ISI: 000264729000034Local ID: 78252ISBN: 978-1-4244-2174-9 (print)ISBN: 978-1-4244-2175-6 (print)OAI: oai:DiVA.org:liu-44912DiVA, id: diva2:265774
Conference
19th International Conference on Pattern Recognition (ICPR 2008)
Projects
VISCOSAvailable from: 2009-10-10 Created: 2009-10-10 Last updated: 2014-06-02

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Nordberg, Klas

Search in DiVA

By author/editor
Nordberg, Klas
By organisation
The Institute of TechnologyComputer Vision
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 215 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf