liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Late gadolinium uptake demonstrated with magnetic resonance in patients where automated PERFIT analysis of myocardial SPECT suggests irreversible perfusion defect.
Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Clinical Physiology .
County Hospital Ryhov.
County Hospital Ryhov.
County Hospital Ryhov.
Show others and affiliations
2008 (English)In: BMC Medical Imaging, E-ISSN 1471-2342, Vol. 8Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2008. Vol. 8
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-44950Local ID: 78430OAI: oai:DiVA.org:liu-44950DiVA, id: diva2:265812
Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2024-07-04
In thesis
1. Infarct size and myocardial function: A methodological study
Open this publication in new window or tab >>Infarct size and myocardial function: A methodological study
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The size of a myocardial infarction (MI) and the concurrent effect on left ventricular (LV) function are essential for decisions regarding patient care and treatment. Images produced with the late gadolinium enhancement (LGE) technique visualize the scar with high spatial resolution. The general aim of this thesis was to study methods to assess scar size in chronic MI, primarily with the use of LGE, and to relate area‐at‐risk and LV function to scar size.

Myocardial perfusion single photon emission computed tomography (MPS) is a well established technique for the assessment of MI size. Our study showed that there is a fairly good agreement between MPS and LGE in the determination of scar size. Wall motion score index (WMSI) correlated moderately with both infarct size and infarct extent determined with LGE.

Manual delineation of myocardium and scar is time consuming and subjective and there is a need for help in objective assessment. We showed that the semi‐automatic computer software, Segment, reduced the evaluation time ≥50% with maintained clinical accuracy.

The segmented scar sequence ‐ inversion recovery fast gradient echo, IR_FGRE, is a well documented sequence for scar determination, however, the sequence requires regular heart rhythm and breath holding for good imaging. We showed that a single shot scar sequence ‐ steady state free precession, SS_SSFP ‐ acquired under free breathing in patients with ongoing atrial fibrillation, had significantly better image quality than IR_FGRE. The scar size and the error of determination were equal for both sequences and the examination time was shorter with SS_SSFP.

In an acute MI it is essential to know the myocardial area‐at‐risk. WMSI is clinically the most common way of assessing LV function, but is highly subjective. Tissue Doppler imaging with strain measurements is considered objective and quantitative in assessing both global and regional LV function compared to WMSI. Our results showed that WMSI is superior to strain for the detection of scar with transmurality ≥50% in patients with acute MI. Also WMSI correlated better than strain on all levels (global, regional, segmental) with final scar size determined with LGE.

LGE images visualize myocardial scar much more distinctly than any other modality. This new technique needs clinical validation but promises intense competition with existing modalities such as myocardial scintigraphy and echocardiography.

However, in individual patient care all modalities should be used according to their own advantages and limitation.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2010. p. 85
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1169
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-53943 (URN)9789173934374 (ISBN)
Public defence
2010-03-26, Originalet, Qulturum, Hus B4, Länssjukhuset Ryhov, Jönköping, 09:00 (Swedish)
Opponent
Supervisors
Available from: 2010-03-09 Created: 2010-02-15 Last updated: 2021-12-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Rosendahl, LeneEngvall, Jan

Search in DiVA

By author/editor
Rosendahl, LeneEngvall, Jan
By organisation
Faculty of Health SciencesClinical Physiology Department of Clinical Physiology
In the same journal
BMC Medical Imaging
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 110 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf