liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optical study of spin injection dynamics in InGaN/GaN quantum wells with GaMnN injection layers
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.ORCID iD: 0000-0001-7155-7103
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.ORCID iD: 0000-0002-6405-9509
Show others and affiliations
2004 (English)In: Journal of Vacuum Science & Technology B, ISSN 1071-1023, E-ISSN 1520-8567, Vol. 22, no 6, 2668-2672 p.Article in journal (Refereed) Published
Abstract [en]

 The spin injection dynamics of GaMnN/InGaN multiquantum well (MQW) light emitting diodes (LEDs) grown by molecular beam epitaxy were examined using picosecond-transient and circularly polarized photoluminescence (PL) measurements. Even with the presence of a room temperature ferromagnetic GaMnN spin injector, the LEDs are shown to exhibit very low efficiency of spin injection. Based on resonant optical orientation spectroscopy, the spin loss in the structures is shown to be largely due to fast spin relaxation within the InGaN MQW, which itself destroys any spin polarization generated by optical spin orientation or electrical spin injection. Typical photoluminescence decay times were 20-40 ns in both commercial GaN MQW LEDs with emission wavelengths between 420-470 nm and in the GaMnN/InGaN multi-quantum well MQW LEDs. In the wurtzite InGaN/GaN system, biaxial strain at the interfaces give rise to large piezoelectric fields directed along the growth axis. This built-in piezofield breaks the reflection symmetry of confining potential leading to the presence of a large Rashba term in the conduction band Hamiltonian which is responsible for the short spin relaxation times.

Place, publisher, year, edition, pages
2004. Vol. 22, no 6, 2668-2672 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-45013DOI: 10.1116/1.1819897Local ID: 79415OAI: oai:DiVA.org:liu-45013DiVA: diva2:265875
Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Buyanova, IrinaBergman, PederChen, Weimin

Search in DiVA

By author/editor
Buyanova, IrinaBergman, PederChen, Weimin
By organisation
The Institute of TechnologyFunctional Electronic MaterialsMaterials Science
In the same journal
Journal of Vacuum Science & Technology B
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 159 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf