liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Recombination processes in N-containing III-V ternary alloys
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.ORCID iD: 0000-0001-7155-7103
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.ORCID iD: 0000-0002-6405-9509
2003 (English)Conference paper, Published paper (Refereed)
Abstract [en]

 In this paper we review our recent results from optical and magneto-optical studies which have allowed identification of the dominant radiative and some non-radiative (NR) recombination processes in Ga(In)NAs and GaNP alloys and related quantum structures. The dominant mechanism for photoluminescence (PL) in Ga(In)NAs is determined as recombination of excitons trapped by potential fluctuations of the band edge, induced by compositional disorder and strain non-uniformity of the alloy. The alloy fluctuations are shown to be largely related to non-optimized growth conditions and can be suppressed by increasing growth temperature or using post-growth thermal annealing. On the other hand, the PL emissions in GaNP alloys are concluded to arise from deep states likely related to N clusters whereas the band-to-band recombination is predominantly NR. With increasing N composition the defect states are shown to become resonant with the conduction band of the alloy and thus optically inactive, leading to an apparent red shift of the PL maximum position. Experimental evidence for a band crossover from an indirect to a direct band gap in GaNP at very low N compositions (not, vert, similar0.5%) is provided from the transient studies of the PL transitions. The first available experimental information on the chemical identity and formation mechanism of NR defects in Ga(In)NAs is also presented.

Place, publisher, year, edition, pages
Solid-State Electronics, Vol. 47: Elsevier , 2003. 467- p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-45052DOI: 10.1016/S0038-11010200390-8Local ID: 79496OAI: oai:DiVA.org:liu-45052DiVA: diva2:265914
Note
INVITED TALKAvailable from: 2009-10-10 Created: 2009-10-10 Last updated: 2017-03-27

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Buyanova, IrinaChen, Weimin

Search in DiVA

By author/editor
Buyanova, IrinaChen, Weimin
By organisation
The Institute of TechnologyFunctional Electronic Materials
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 74 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf