liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electronic structure of the 0.88-eV luminescence center in electron-irradiated gallium nitride
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.ORCID iD: 0000-0001-7155-7103
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.ORCID iD: 0000-0002-6405-9509
Show others and affiliations
1999 (English)In: Physical review. B, Condensed matter and materials physics, Vol. 60, no 3, 1746-1751 p.Article in journal (Refereed) Published
Abstract [en]

 Photoluminescence (PL) spectroscopy is employed to determine the nature of a near-infrared PL emission with a no-phonon line at ∼0.88 eV, commonly present in electron-irradiated GaN. This PL emission is suggested to originate from an internal transition between a moderately shallow excited state (with an ionization energy ∼21 meV) and the deep ground state (with an ionization energy ∼900 meV) of a deep defect. The existence of a higher-lying second excited state related to the 0.88-eV PL center is also shown from temperature-dependent studies. A different electronic character of the wave functions related to the first and second excited states has been revealed by PL polarization measurements. Since the PL emission has been observed with comparable intensity in all electron-irradiated GaN samples independent of doping on the starting material, it is proposed that either native defects, or common residual contaminants or their complexes are involved. The substitutional ON donor (or related complex) is considered as the most probable candidate, based on the observed striking similarity in the local vibrational properties between the 0.88-eV PL centers and the substitutional OP donor in GaP.

Place, publisher, year, edition, pages
1999. Vol. 60, no 3, 1746-1751 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-45141DOI: 10.1103/PhysRevB.60.1746Local ID: 79816OAI: oai:DiVA.org:liu-45141DiVA: diva2:266003
Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2017-03-27

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Buyanova, IrinaWagner, MatthiasChen, WeiminMonemar, Bo

Search in DiVA

By author/editor
Buyanova, IrinaWagner, MatthiasChen, WeiminMonemar, Bo
By organisation
The Institute of TechnologyFunctional Electronic MaterialsMaterials Science
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 100 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf