liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Symmetric fluoro-substituted diol-based HIV protease inhibitors: Ortho-fluorinated and meta-fluorinated P1/P1'-benzyloxy side groups significantly improve the antiviral activity and preserve binding efficacy
Dept. of Cell and Molecular Biology, BMC, Uppsala University, SE-751 24, Uppsala, Sweden.
Löwgren, S., Dept. of Cell and Molecular Biology, BMC, Uppsala University, SE-751 24, Uppsala, Sweden.
Show others and affiliations
2004 (English)In: European Journal of Biochemistry, ISSN 0014-2956, E-ISSN 1432-1033, Vol. 271, no 22, 4594-4602 p.Article in journal (Refereed) Published
Abstract [en]

HIV-1 protease is a pivotal enzyme in the later stages of the viral life cycle which is responsible for the processing and maturation of the virus particle into an infectious virion. As such, HIV-1 protease has become an important target for the treatment of AIDS, and efficient drugs have been developed. However, negative side effects and fast emerging resistance to the current drugs have necessitated the development of novel chemical entities in order to exploit different pharmacokinetic properties as well as new interaction patterns. We have used X-ray crystallography to decipher the structure-activity relationship of fluoro-substitution as a strategy to improve the antiviral activity and the protease inhibition of C2-symmetric diol-based inhibitors. In total we present six protease-inhibitor complexes at 1.8-2.3 Å resolution, which have been structurally characterized with respect to their antiviral and inhibitory activities, in order to evaluate the effects of different fluoro-substitutions. These C2-symmetric inhibitors comprise mono- and difluoro-substituted benzyloxy side groups in P1/P1' and indanoleamine side groups in P2/P2'. The ortho- and meta-fluorinated P1/P1'-benzyloxy side groups proved to have the most cytopathogenic effects compared with the nonsubstituted analog and related C2-symmetric diol-based inhibitors. The different fluorosubstitutions are well accommodated in the protease S1/S1' subsites, as observed by an increase in favorable Van der Waals contacts and surface area buried by the inhibitors. These data will be used in the development of potent inhibitors with different pharmacokinetic profiles towards resistant protease mutants.

Place, publisher, year, edition, pages
2004. Vol. 271, no 22, 4594-4602 p.
Keyword [en]
AIDS, Aspartic protease, Crystal structure, Fluorine, HIV
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-45581DOI: 10.1111/j.1432-1033.2004.04431.xOAI: oai:DiVA.org:liu-45581DiVA: diva2:266477
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Kvarnström, Ingemar

Search in DiVA

By author/editor
Kvarnström, Ingemar
By organisation
The Institute of TechnologyOrganic Chemistry
In the same journal
European Journal of Biochemistry
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 42 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf