liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Contributions from dispersion and born self-free energies to the solvation energies of salt solutions
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics .
Res. Sch. of Phys. Sci./Engineering, Australian National University, Canberra, 0200, Australia, Inst. of Phys./Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
2004 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, Vol. 108, no 33, 12593-12595 p.Article in journal (Refereed) Published
Abstract [en]

That the Born theory provides an accurate means of calculating solvation energies of ions in water has been demonstrated by Rashin and Honig (Rashin, A. A., Honig, B. J. Phys. Chem. 1985, 89, 5588). They could fit the experimental solvation energies of a number of salts nicely by a simple increase of 7% in the expected radii of all ions. However, as we demonstrate herein, there is an important previously ignored contribution due to the ionic dispersion self-free energy. The ionic parameters necessary to estimate the different contributions to solvation energy are the ionic radii, the ionic polarizabilities, and the ionization potentials. Whereas the polarizabilities and ionization potentials of a number of salts have recently been derived ab initio (in both vacuum and water), the appropriate choices of radii are less well-known. We pursue two different approaches to assign the ionic radii. In the first approach, we find that an increase of all expected radii by 23% gives reasonable agreement between theory and experiment (to within 6%). In the second approach, we increased the expected radii of six ions separately (10-30%) to obtain a best fit for the nine salts investigated. In this second approach, the deviations between theory and experiment were less than 0.1%. The essential point is that a proper theory must include contributions from both electrostatic (Born) and electrodynamic (dispersion) self-free energies.

Place, publisher, year, edition, pages
2004. Vol. 108, no 33, 12593-12595 p.
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-45663DOI: 10.1021/jp048517aOAI: diva2:266559
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2011-01-12

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Boström, Mathias
By organisation
The Institute of TechnologyTheoretical Physics
In the same journal
Journal of Physical Chemistry B
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 16 hits
ReferencesLink to record
Permanent link

Direct link