liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transmission electron microscopy studies and simulation of the indentation response of superelastic fullerenelike carbon nitride thin films
Christian Doppler Laboratory for Advanced Hard Coatings, Department of Physical Metallurgy and Materials Testing, University of Leoben, 8700 Leoben, Austria.
Department of Physical Metallurgy and Materials Testing, University of Leoben, 8700 Leoben, Austria.
Instituto Madrileño de Estudios Avanzados en Materiales (IMDEA-Materiales), E. T. S. de Ingenieros de Caminos, 28040 Madrid, Spain.
Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany.
Show others and affiliations
2008 (English)In: Journal of Applied Physics, ISSN 0021-8979, Vol. 103, no 12Article in journal (Refereed) Published
Abstract [en]

The highly elastic behavior of fullerenelike carbon nitride thin films on single crystal Si (001) substrates has been studied by nanoindentation. The films exhibit a microstructure of frequently bent and intersecting graphene sheets. Transmission electron microscopy of indented areas revealed no tendency to plastic deformation in the highly elastic and compliant film. Also, a unique deformation pattern in the Si substrate is observed, where a {111} facetted inverted pyramid of untransformed Si remained intact under the indenter with a retained CNx /Si (001) interface. Analytical approaches using the effective indenter method, supported by finite element methods, are employed to understand the nonlinear but fully elastic behavior of the coatings as well as to describe the critical parameters for the deformation and phase transformation of the Si substrate. © 2008 American Institute of Physics.

Place, publisher, year, edition, pages
2008. Vol. 103, no 12
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-45722DOI: 10.1063/1.2939716OAI: oai:DiVA.org:liu-45722DiVA: diva2:266618
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2016-08-31

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Hultman, Lars

Search in DiVA

By author/editor
Hultman, Lars
By organisation
The Institute of TechnologyThin Film Physics
In the same journal
Journal of Applied Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 130 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf