liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Improving the Tolerance of a Protein A Analogue to Repeated Alkaline Exposures Using a Bypass Mutagenesis Approach
Department of Biotechnology, Royal Institute of Technology, KTH, Stockholm, Sweden.
Gülich, S., Dept. of Molec. Biophys./Biochem., Yale University, New Haven, CT, United States.
Gräslund, T., Department of Biotechnology, Royal Institute of Technology, KTH, Stockholm, Sweden.
Department of Biotechnology, Royal Institute of Technology, KTH, Stockholm, Sweden.
Show others and affiliations
2004 (English)In: Proteins: Structure, Function, and Genetics, ISSN 0887-3585, Vol. 55, no 2, 407-416 p.Article in journal (Refereed) Published
Abstract [en]

Staphylococcal protein A (SPA) is a cell surface protein expressed by Staphylococcus aureus. It consists of five repetitive domains. The five SPA-domains show individual interaction to the Fc-fragment as well as certain Fab-fragments of immunoglobulin G (IgG) from most mammalian species. Due to the high affinity and selectivity of SPA, it has a widespread use as an affinity ligand for capture and purification of antibodies. One of the problems with proteinaceous affinity ligands in large-scale purification is their sensitivity to alkaline conditions. SPA however, is considered relatively stable to alkaline treatment. Nevertheless, it is desirable to further improve the stability in order to enable an SPA-based affinity medium to withstand even longer exposure to the harsh conditions associated with cleaning-in-place (CIP) procedures. For this purpose, a protein engineering strategy, which was used earlier for stabilization and consists of replacing the asparagine residues, is employed. Since Z in its "nonengineered" form already has a significant tolerance to alkaline treatment, small changes in stability due to the mutations are difficult to assess. Hence, in order to enable detection of improvements regarding the alkaline resistance of the Z domain, we chose to use a bypass mutagenesis strategy using a mutated variant Z(F30A) as a surrogate framework. Z(F30A) has earlier been shown to possess an affinity to IgG that is similar to the wild-type but also demonstrates decreased structural stability. Since the contribution of the different asparagine residues to the deactivation rate of a ligand is dependent on the environment and also the structural flexibility of the particular region, it is important to consider all sensitive amino acids one by one. The parental Z-domain contains eight asparagine residues, each with a different impact on the alkaline stability of the domain. By exchanging asparagine 23 for a threonine, we were able to increase the stability of the Z(F30A) domain in alkaline conditions. Also, when grafting the N23T mutation to the Z scaffold, we were able to detect an increased tolerance to alkaline treatment compared to the native Z molecule. © 2004 Wiley-Liss, Inc.

Place, publisher, year, edition, pages
2004. Vol. 55, no 2, 407-416 p.
Keyword [en]
Affinity chromatography, Deamidation, Protein A, Purification, Stabilization, Z domain
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-45759DOI: 10.1002/prot.10616OAI: diva2:266655
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2011-01-12

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Karlsson, Martin
By organisation
The Institute of TechnologyBiochemistry
In the same journal
Proteins: Structure, Function, and Genetics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 44 hits
ReferencesLink to record
Permanent link

Direct link