liu.seSearch for publications in DiVA

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Sharp pointwise estimates for solutions of strongly elliptic second order systems with boundary data from L-PPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2007 (English)In: Applicable Analysis, ISSN 0003-6811, Vol. 86, no 7, 783-805 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2007. Vol. 86, no 7, 783-805 p.
##### Keyword [en]

boundary L-P-data, pointwise estimates, strongly elliptic systems, lame and stokes systems
##### National Category

Engineering and Technology
##### Identifiers

URN: urn:nbn:se:liu:diva-45929DOI: 10.1080/00036810601094337OAI: oai:DiVA.org:liu-45929DiVA: diva2:266825
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2011-01-11

The strongly elliptic system Aij partial derivative(2)u/partial derivative x(i)partial derivative x(j) = 0 with constant m x m matrix-valued coefficients A(ij) = A(ji) for a vector-valued functions u = (u(1),...,u(m)) in the half-space R-+(n) = {x = (x(1),..., x(n)) : x(n) > 0} as well as in a domain Omega subset of R-n with smooth boundary partial derivative Omega and compact closure Omega is considered. A representation for the sharp constant C-p in the inequality vertical bar u(x)vertical bar <= C(p)x(n)((1-n)/p) parallel to u vertical bar x(n)=0 parallel to p is obtained, where vertical bar center dot vertical bar is the length of a vector in the m-dimensional Euclidean space, x epsilon R-+(n), and parallel to center dot parallel to(p) is the L-p-norm of the modulus of an m-component vector-valued function, 1 <= p <= infinity. It is shown that lim vertical bar x - O-x vertical bar((n-1)/p) sup{vertical bar u(x)vertical bar : parallel to u vertical bar partial derivative Omega parallel to p <= 1} =C-p(O-x), x -> O-x where O-x is a point at partial derivative Omega nearest to x epsilon Omega, u is the solution of Dirichlet problem in Omega for the strongly elliptic system A(ij)partial derivative(2)u/partial derivative x(i)partial derivative x(j) = 0 with boundary data from [L-p(partial derivative Omega)](m), and C-p(O-x) is the sharp constant in the aforementioned inequality for u in the tangent space R-+(n) (O-x) to partial derivative Omega at O-x. As examples, Lame ' and Stokes systems are considered. For instance, in the case of the Stokes system, the explicit formula C-p = 2 Gamma((n + 2)/2)/pi((n+p-1)/(2p)) {Gamma((2p + n - 1)/(2p - 2))/Gamma((n + 1)p/(2p - 2))}((p-1)/p) is derived, where 1 < p < infinity.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});