We report results from detailed optical spectroscopy from MOCVD grown GaN/Al0.07Ga0.93N multiple quantum wells (MQWs). Effects of Si doping position on the emission energy and recombination dynamics were studied by means of photoluminescence (PL) and time-resolved PL measurements. The samples were Si doped with the same level but different position of the dopant layer. Only the sample doped in the well shows the MQW emission redshifted compare to the GaN bandgap. The redshift is attributed to the self-energy shift of the electron states due to the correlated motion of the electrons exposed to the fluctuating potential of the donor ions. At low temperature the PL decay time of the sample doped in the well by a factor of two is longer than for the barrier doped case. The difference is explained by the effect of interplay of free carriers and ions on the screening of the polarization field in these doped structures.