liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Particle-in-cell simulations of electron acceleration by a simple capacitative antenna in collisionless plasma
Linköping University, Department of Science and Technology, Visual Information Technology and Applications (VITA). Linköping University, The Institute of Technology.ORCID iD: 0000-0003-4055-0552
2004 (English)In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 109, no A12Article in journal (Refereed) Published
Abstract [en]

We examine the electron acceleration by a localized electrostatic potential oscillating at high frequencies by means of particle-in-cell (PIC) simulations, in which we apply oscillating electric fields to two neighboring simulation cells. We derive an analytic model for the direct electron heating by the externally driven antenna electric field, and we confirm that it approximates well the electron heating obtained in the simulations. In the simulations, transient waves accelerate electrons in a sheath surrounding the antenna. This increases the Larmor radii of the electrons close to the antenna, and more electrons can reach the antenna location to interact with the externally driven fields. The resulting hot electron sheath is dense enough to support strong waves that produce high-energy sounder-accelerated electrons (SAEs) by their nonlinear interaction with the ambient electrons. By increasing the emission amplitudes in our simulations to values that are representative for the ones of the sounder on board the OEDIPUS C (OC) satellites, we obtain electron acceleration into the energy range which is comparable to the 20 keV energies of the SAE observed by the OC mission. The emission also triggers stable electrostatic waves oscillating at frequencies close to the first harmonic of the electron cyclotron frequency. We find this to be an encouraging first step of examining SAE generation with kinetic numerical simulation codes.

Place, publisher, year, edition, pages
2004. Vol. 109, no A12
Keywords [en]
antenna, sounder-accelerated electrons, particle-in-cell simulation
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-46151DOI: 10.1029/2004JA010436OAI: oai:DiVA.org:liu-46151DiVA, id: diva2:267047
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Dieckmann, Mark E

Search in DiVA

By author/editor
Dieckmann, Mark E
By organisation
Visual Information Technology and Applications (VITA)The Institute of Technology
In the same journal
Journal of Geophysical Research
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 216 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf