liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Connecting shock velocities to electron-injection mechanisms
Linköping University, Department of Science and Technology, Visual Information Technology and Applications (VITA). Linköping University, The Institute of Technology.ORCID iD: 0000-0003-4055-0552
Linköping University, Department of Science and Technology, Visual Information Technology and Applications (VITA). Linköping University, The Institute of Technology.ORCID iD: 0000-0002-9466-9826
2004 (English)In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 92, no 6Article in journal (Refereed) Published
Abstract [en]

Electrons can be accelerated by their interaction with nonlinearly saturated electrostatic waves up to speeds with which they can undergo diffusive acceleration across supernova remnant shocks. Here, we model this wave-electron interaction by particle-in-cell and Vlasov simulations. We find that the lifetime of the saturated wave is considerably longer in the Vlasov simulation, due to differences in how these simulation methods approximate the plasma. Electron surfing acceleration which requires a stable saturated wave may thus be more important for electron acceleration at shocks than previously thought. For beam speeds above a critical value, which we estimate here, both simulation codes exclude surfing acceleration due to a rapid wave collapse.

Place, publisher, year, edition, pages
2004. Vol. 92, no 6
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-46281DOI: 10.1103/PhysRevLett.92.065006OAI: oai:DiVA.org:liu-46281DiVA, id: diva2:267177
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Dieckmann, Mark EYnnerman, Anders

Search in DiVA

By author/editor
Dieckmann, Mark EYnnerman, Anders
By organisation
Visual Information Technology and Applications (VITA)The Institute of Technology
In the same journal
Physical Review Letters
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 357 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf