Reasoning about temporal relations: The tractable subalgebras of Allen's interval algebra
2003 (English)In: Journal of the ACM, ISSN 0004-5411, E-ISSN 1557-735X, Vol. 50, no 5, p. 591-640Article in journal (Refereed) Published
Abstract [en]
Allen's interval algebra is one of the best established formalisms for temporal reasoning. This article provides the final step in the classification of complexity for satisfiability problems over constraints expressed in this algebra. When the constraints are chosen from the full Allen's algebra, this form of satisfiability problem is known to be NP-complete. However, eighteen tractable subalgebras have previously been identified, we show here that these subalgebras include all possible tractable subsets of Allen's algebra. In other words, we show that this algebra contains exactly eighteen maximal tractable subalgebras, and reasoning in any fragment not entirely contained in one of these subalgebras is NP-complete. We obtain this dichotomy result by giving a new uniform description of the known maximal tractable subalgebras, and then systematically using a general algebraic technique for identifying maximal subalgebras with a given property.
Place, publisher, year, edition, pages
2003. Vol. 50, no 5, p. 591-640
Keywords [en]
Allen's algebra, Complexity, Dichotomy theorem, NP-completeness, Representing graphs by intervals, Satisfiability of temporal constraints, Tractable cases
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-46509DOI: 10.1145/876638.876639OAI: oai:DiVA.org:liu-46509DiVA, id: diva2:267405
2009-10-112009-10-112017-12-13