liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrochemically deposited nickel membranes, process-microstructure-property relationships
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.ORCID iD: 0000-0001-9140-6724
The Technical University of Denmark, Inst. of Manufacturing Eng./Mgmt., Lyngby DK-2800, Denmark.
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials .ORCID iD: 0000-0002-2286-5588
Show others and affiliations
2003 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 172, no 1, 79-89 p.Article in journal (Refereed) Published
Abstract [en]

This paper reports on the manufacturing, surface morphology, internal structure and mechanical properties of Ni-foils used as membranes in reference-microphones. Two types of foils, referred to as S-type and 0-type foils, were electrochemically deposited from a Watts-type electrolyte, with (S-type) or without (0-type) the use of the sulfur-containing additive sodium saccharin. Both types of Ni-foils appeared perfectly smooth when investigated with scanning electron microscopy (SEM), while atomic force microscopy (AFM) and transmission electron microscopy (TEM) revealed differences in the surface morphologies and a smaller grain-size in the S-type foils. X-Ray diffraction showed a <311> texture component in both types of Ni-foils, most pronounced for 0-type foils. A minor <111> texture component observed in both foil types was strongest in the S-type foils. Mechanically 0-type foils proved more ductile than S-type foils during thin film tensile testing, due to microstructural defects caused by sodium saccharin during deposition. Tensile strengths in the order of 700-1000 MPa were observed - highest for the more ductile 0-type foils. A hardness in the order of 6 GPa (590 HV) was found by nanoindentation. © 2003 Elsevier Science B.V. All rights reserved.

Place, publisher, year, edition, pages
2003. Vol. 172, no 1, 79-89 p.
Keyword [en]
Electrodeposition, Mechanical testing, Microstructure, Nickel, Thin films
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-46553DOI: 10.1016/S0257-8972(03)00253-6OAI: oai:DiVA.org:liu-46553DiVA: diva2:267449
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Persson, PerOdén, MagnusHultman, Lars

Search in DiVA

By author/editor
Persson, PerOdén, MagnusHultman, Lars
By organisation
The Institute of TechnologyThin Film PhysicsNanostructured Materials
In the same journal
Surface & Coatings Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 172 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf