liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The quaternary structure of DNA polymerase e from Saccharomyces cerevisiae
Dept. of Med. Biochem./Biophysics, Umeå University, SE-901 87 Umeå, Sweden.
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Molecular Biotechnology .
Dept. of Med. Biochem./Biophysics, Umeå University, SE-901 87 Umeå, Sweden.
2003 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 278, no 16, p. 14082-14086Article in journal (Refereed) Published
Abstract [en]

DNA polymerase e (Pol e) trom Saccharomyces cerevisiae consists of four subunits (Pol2, Dpb2, Dpb3, and Dpb4) and is essential for chromosomal DNA replication. Biochemical characterizations of Pol e have been cumbersome due to protease sensitivity and the limited amounts of Pol e in cells. We have developed a protocol for overexpression and purification of Pol e from S. cerevisiae. The native four-subunit complex was purified to homogeneity by conventional chromatography. Pol e was characterized biochemically by sedimentation velocity experiments and gel filtration experiments. The stoichiometry of the four subunits was estimated to be 1:1:1:1 from colloidal Coomassie-stained gels. Based on the sedimentation coefficient (11.9 S) and the Stokes radius (74.5 Å), a molecular mass for Pol e of 371 kDa was calculated, in good agreement with the calculated molecular mass of 379 kDa for a heterotetramer. Furthermore, analytical equilibrium ultracentrifugation experiments support the proposed heterotetrameric structure of Pol e. Thus, both DNA polymerase d and Pol e are purified as monomeric complexes, in agreement with accumulating evidence that Pol d and Pol e are located on opposite strands of the eukaryotic replication fork.

Place, publisher, year, edition, pages
2003. Vol. 278, no 16, p. 14082-14086
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-46660DOI: 10.1074/jbc.M211818200OAI: oai:DiVA.org:liu-46660DiVA, id: diva2:267556
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Jonsson, Bengt-Harald

Search in DiVA

By author/editor
Jonsson, Bengt-Harald
By organisation
The Institute of TechnologyMolecular Biotechnology
In the same journal
Journal of Biological Chemistry
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 203 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf