liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Separability preserving Dirac reductions of Poisson pencils on Riemannian manifolds
Blaszak, M., Institute of Physics, A Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland.
Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology, Communications and Transport Systems.
2003 (English)In: Journal of Physics A: Mathematical and General, ISSN 0305-4470, E-ISSN 1361-6447, Vol. 36, no 5, p. 1337-1356Article in journal (Refereed) Published
Abstract [en]

Dirac deformation of Poisson operators of arbitrary rank is considered. The question when Dirac reduction does not destroy linear Poisson pencils is studied. A class of separability preserving Dirac reductions in the corresponding quasi-bi-Hamiltonian systems of Benenti type is discussed. Two examples of such reductions are given.

Place, publisher, year, edition, pages
2003. Vol. 36, no 5, p. 1337-1356
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-46726DOI: 10.1088/0305-4470/36/5/311OAI: oai:DiVA.org:liu-46726DiVA, id: diva2:267622
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2023-06-14

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Marciniak, Krzysztof

Search in DiVA

By author/editor
Marciniak, Krzysztof
By organisation
The Institute of TechnologyCommunications and Transport Systems
In the same journal
Journal of Physics A: Mathematical and General
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 392 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf