liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The influence of thermal annealing on residual stresses and mechanical properties of arc-evaporated TiCxN1−x (x=0, 0,15 and 0,45) thin films
SECO Tools AB.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-2837-3656
Show others and affiliations
2002 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 50, no 20, 5103-5114 p.Article in journal (Refereed) Published
Abstract [en]

We report the stress relaxation behavior of arc-evaporated TiCxN1−x thin films during isothermal annealing between 350 and 900°C. Films with x=0, 0,15 and 0,45 each having an initial compressive intrinsic stress σint = -5.4 GPa were deposited by varying the substrate bias Vs and the gas composition. Annealing above the deposition temperature leads to a steep decrease in the magnitude of σint to a saturation stress value, which is a function of the annealing temperature. The corresponding apparent activation energies for stress relaxation are Ea=2.4, 2.9, and 3.1 eV, for x=0, 0,15 and 0,45 respectively. TiC0.45N0.55 films with a lower initial stress σint = -3 GPa obtained using a high substrate bias, show a higher activation energy Ea=4.2 eV.In all the films, stress relaxation is accompanied by a decrease in defect density indicated by the decreased width of X-ray diffraction peaks and decreased strain contrast in transmission electron micrographs. Correlation of these results with film hardness and microstructure measurements indicates that the stress relaxation is a result of point-defect annihilation taking place both during short-lived metal-ion surface collision cascades during deposition, and during post-deposition annealing by thermally activated processes. The difference in Ea for the films of the same composition deposited at different Vs suggests the existence of different types of point-defect configurations and recombination mechanisms.

Place, publisher, year, edition, pages
2002. Vol. 50, no 20, 5103-5114 p.
Keyword [en]
Activation energies, Annealing, Arc evaporation, Hardness, PVD-coating, Residual stresses, Thermal stability, Titanium carbonitride
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-46790DOI: 10.1016/S1359-6454(02)00365-8OAI: oai:DiVA.org:liu-46790DiVA: diva2:267686
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Hörling, AndersHultman, Lars

Search in DiVA

By author/editor
Hörling, AndersHultman, Lars
By organisation
Thin Film PhysicsThe Institute of Technology
In the same journal
Acta Materialia
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 161 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf