liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermal stability of self-assembled monolayers: Influence of lateral hydrogen bonding
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
Show others and affiliations
2002 (English)In: Journal of Physical Chemistry B, ISSN 1089-5647, Vol. 106, no 40, 10401-10409 p.Article in journal (Refereed) Published
Abstract [en]

Temperature-programmed desorption (TPD) of self-assembled monolayers (SAMs) on gold is investigated by using in parallel mass spectrometry (MS) and infrared reflection-absorption spectroscopy (IRAS). Monolayers formed by HS(CH2)n-OH (n = 18, 22) and HS(CH2)15-CONH-(CH2CH2O)-H (EG1) are compared to reveal the influence of specifically introduced hydrogen-bonding groups on their thermal stability. The overall desorption process of the above molecules is found to occur in two main steps, a disordering of the alkyl chains followed by a complex series of decomposition/desorption reactions. The final step of the process involves desorption of sulfur from different chemisorption states. The amide-group-containing SAM, which is stabilized by lateral hydrogen bonds, displays a substantial delay of the alkyl chain disordering by about 50 K, as compared to the linear chain alcohols HS(CH2)n-OH. Moreover, the decomposition of the alkyls and the onset of sulfur desorption occur at a temperature that is higher by approximately 25 K as compared to the HS(CH2)18-OH SAM. The desorption process is also studied for two oligo(ethylene glycol)-terminated SAMs, HS(CH2)15-X-(CH2CH2O)4-H (EG4-SAMs), where X is -CONH- and -COO- linking groups. In addition to the molecular chain disordering, the decomposition/desorption process of the EG4-SAMs occurs in two steps. The first is associated with the loss of the oligomer portion and the second with the desorption of the alkylthiolate part of the molecule. Our study points out that lateral hydrogen bonding, introduced via amide groups, is a convenient way to improve the thermal stability of alkanthiolate SAMs.

Place, publisher, year, edition, pages
2002. Vol. 106, no 40, 10401-10409 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-46802DOI: 10.1021/jp0200526OAI: oai:DiVA.org:liu-46802DiVA: diva2:267698
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2011-01-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Valiokas, RamunasÖstblom, MattiasLiedberg, Bo

Search in DiVA

By author/editor
Valiokas, RamunasÖstblom, MattiasLiedberg, Bo
By organisation
The Institute of TechnologyDepartment of Physics, Chemistry and BiologySensor Science and Molecular Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 99 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf