liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces
Linköping University, The Institute of Technology. Linköping University, Department of Mathematics, Applied Mathematics.
Linköping University, Department of Mathematics, Applied Mathematics. Linköping University, The Institute of Technology.
2002 (English)In: Journal of Functional Analysis, ISSN 0022-1236, E-ISSN 1096-0783, Vol. 195, no 2, 230-238 p.Article in journal (Refereed) Published
Abstract [en]

The article is concerned with the Bourgain, Brezis and Mironescu theorem on the asymptotic behaviour of the norm of the Sobolev-type embedding operator: Ws,p ? Lpn/(n-sp) as s ? 1 and s ? n/p. Their result is extended to all values of s ? (0, 1) and is supplied with an elementary proof. The relation is proved. © 2002 Elsevier Science (USA).

Place, publisher, year, edition, pages
2002. Vol. 195, no 2, 230-238 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-46860DOI: 10.1006/jfan.2002.3955OAI: oai:DiVA.org:liu-46860DiVA: diva2:267756
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Maz´ya, Vladimir G.Shaposhnikova, Tatyana

Search in DiVA

By author/editor
Maz´ya, Vladimir G.Shaposhnikova, Tatyana
By organisation
The Institute of TechnologyApplied Mathematics
In the same journal
Journal of Functional Analysis
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 43 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf