liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Conformational transitions of a free amino-acid-functionalized polythiophene induced by different buffer systems
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-5582-140X
Department of Polymer Technology, Chalmers University of Technology, Göteborg, Sweden.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
2002 (English)In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 14, no 42, 10011-10020 p.Article in journal (Refereed) Published
Abstract [en]

A chiral, 3-substituted polythiophene with an amino-acid function shows pH-dependent visible, emission and circular dichroism spectra in buffered aqueous solution. At pH equal to the pI of the amino-acid, the backbone adopts a nonplanar right-handed helical conformation and the polymer chains are separated from each other. Increasing pH leads to a more planar conformation of the backbone and an aggregation of the polymer chains occurs. A lower pH will also lead to a more planar conformation of the backbone, but aggregation of the polymer chains appears to be absent. The aggregates are disrupted by increasing ionic strength in alkaline buffer systems, indicating hydrogen bonding is important for aggregation. On the other hand, ions containing an amino group and one or more hydroxyl groups induce a more planar conformation of the polymer backbone.

Place, publisher, year, edition, pages
2002. Vol. 14, no 42, 10011-10020 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-46886DOI: 10.1088/0953-8984/14/42/313OAI: oai:DiVA.org:liu-46886DiVA: diva2:267782
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13
In thesis
1. Conjugated polyelectrolytes: conformation sensitive optical probes for the recording of biological processes
Open this publication in new window or tab >>Conjugated polyelectrolytes: conformation sensitive optical probes for the recording of biological processes
2005 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The physical properties of conjugated polymers can be utilized for a wide range of biosensors. For instance, the conformational flexibility fouud in conjugated polyelectrolytes, allows direct connection between the geometry of chains and the resulting electronic structure and optical processes, since the extension of the π-conjugated system is distorted by conformational changes of the polyelectrolyte backbone. The biosensors presented in this thesis are utilizing conformational changes of conjugated polyelectrolytes for the detection of biomolecular processes, such as biospecific interactions and conformational changes of biomolecules. The methodology have been used for the detection of DNA-hybridization, single nucleotide polymorphism (SNP) in DNA, conformational alterations of synthetic peptides, conformational alterations of Calmodulin and binding of Ca2+-activated Calmodulin (CaM) to Calcineurin, and amyloid fibril formation of amyloidogenic proteins.

The method is based on non-covalent assembly of a conjugated polyelectrolyte and a biomolecule of interest. Upon exposure to a second biomolecule recognizing the first biomolecule or a conformational change of the first biomolecule, a conformational alteration of the polyelectrolyte backbone and a change in the electronic properties of the polyelectrolyte occurs, and these alterations can be detected by a change of the absorption or the fluorescence from the polyelectrolyte. Hence, conjugated polyelectrolytes can be used as novel conformation sensitive optical probes for the detection of several biological processes. The biomolecular interaction or the conformational changes of the biomolecule are reflected as an alteration of the geometry and the electronic structure of the bouud polyelectrolyte chains and are detected by absorption and emission. The present mechanism may be used for detection of a variety biomolecular processes, and the simplicity and the diversity of this methodology make it suitable for making inexpensive protein- and DNA-chips for rapid detection of biomolecular recognition.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet, 2005. 61 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 961
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-30214 (URN)15709 (Local ID)91-85457-01-9 (ISBN)15709 (Archive number)15709 (OAI)
Public defence
2005-09-15, Planck, Fysikhuset, Linköpings universitet, Linköping, 13:15 (Swedish)
Opponent
Available from: 2009-10-09 Created: 2009-10-09 Last updated: 2014-04-08

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Nilsson, PeterInganäs, Olle

Search in DiVA

By author/editor
Nilsson, PeterInganäs, Olle
By organisation
Biomolecular and Organic ElectronicsThe Institute of Technology
In the same journal
Journal of Physics: Condensed Matter
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 210 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf