liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Characterization of the interface dipole at organic/metal interfaces
Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.ORCID iD: 0000-0001-8845-6296
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry .
Show others and affiliations
2002 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, Vol. 124, no 27, 8131-8141 p.Article in journal (Refereed) Published
Abstract [en]

In organics-based (opto)electronic devices, the interface dipoles formed at the organic/metal interfaces play a key role in determining the barrier for charge (hole or electron) injection between the metal electrodes and the active organic layers. The origin of this dipole is rationalized here from the results of a joint experimental and theoretical study based on the interaction between acrylonitrile, a p-conjugated molecule, and transition metal surfaces (Cu, Ni, and Fe). The adsorption of acrylonitrile on these surfaces is investigated experimentally by photoelectron spectroscopies, while quantum mechanical methods based on density functional theory are used to study the systems theoretically. It appears that the interface dipole formed at an organic/metal interface can be divided into two contributions: (i) the first corresponds to the "chemical" dipole induced by a partial charge transfer between the organic layers and the metal upon chemisorption of the organic molecules on the metal surface, and (ii) the second relates to the change in metal surface dipole because of the modification of the metal electron density tail that is induced by the presence of the adsorbed organic molecules. Our analysis shows that the charge injection barrier in devices can be tuned by modulating various parameters: the chemical potential of the bare metal (given by its work function), the metal surface dipole, and the ionization potential and electron affinity of the organic layer.

Place, publisher, year, edition, pages
2002. Vol. 124, no 27, 8131-8141 p.
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-46950DOI: 10.1021/ja025673rOAI: diva2:267846
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2013-09-12

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Crispin, XavierCrispin, AnnicaSalaneck, William R
By organisation
The Institute of TechnologyDepartment of Science and TechnologySurface Physics and Chemistry
In the same journal
Journal of the American Chemical Society
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 26 hits
ReferencesLink to record
Permanent link

Direct link