liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Crossover from regular to irregular behavior in current flow through open billiards
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics .
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
2002 (English)In: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, ISSN 1539-3755, Vol. 66, no 1Article in journal (Refereed) Published
Abstract [en]

We discuss signatures of quantum chaos in terms of distributions of nodal points, saddle points, and streamlines for coherent electron transport through two-dimensional billiards, which are either nominally integrable or chaotic. As typical examples of the two cases we select rectangular and Sinai billiards. We have numerically evaluted distribution functions for nearest distances between nodal points and found that there is a generic form for open chaotic billiards through which a net current is passed. We have also evaluated the distribution functions for nodal points with specific vorticity (winding number) as well as for saddle points. The distributions may be used as signatures of quantum chaos in open systems. All distributions are well reproduced using random complex linear combinations of nearly monochromatic states in nominally closed billiards. In the case of rectangular billiards with simple sharp-cornered leads the distributions have characteristic features related to order among the nodal points. A flaring or rounding of the contact regions may, however, induce a crossover to nodal point distributions and current flow typical for quantum chaos. For an irregular arrangement of nodal points, as for example in the Sinai billiard, the quantum flow lines become very complex and volatile, recalling chaos among classical trajectories. Similarities with percolation are pointed out. ©2002 The American Physical Society.

Place, publisher, year, edition, pages
2002. Vol. 66, no 1
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-46962DOI: 10.1103/PhysRevE.66.016218OAI: oai:DiVA.org:liu-46962DiVA: diva2:267858
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2011-01-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Berggren, Karl-FredrikSadreev, AlmasStarikov, Anton

Search in DiVA

By author/editor
Berggren, Karl-FredrikSadreev, AlmasStarikov, Anton
By organisation
The Institute of TechnologyTheoretical Physics Department of Physics, Chemistry and Biology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 47 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf