liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation
Department of Applied Physics, Chalmers Institute of Technology, SE-412 96 Göteborg, Sweden.
Vörös, J., Laboratory for Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland.
Department of Applied Physics, Chalmers Institute of Technology, SE-412 96 Göteborg, Sweden.
Laboratory for Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland.
Show others and affiliations
2002 (English)In: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 24, no 2, 155-170 p.Article in journal (Refereed) Published
Abstract [en]

The adsorption kinetics of three model proteins - human serum albumin, fibrinogen and hemoglobin - has been measured and compared using three different experimental techniques: optical waveguide lightmode spectroscopy (OWLS), ellipsometry (ELM) and quartz crystal microbalance (QCM-D). The studies were complemented by also monitoring the corresponding antibody interactions with the pre-adsorbed protein layer. All measurements were performed with identically prepared titanium oxide coated substrates. All three techniques are suitable to follow in-situ kinetics of protein-surface and protein-antibody interactions, and provide quantitative values of the adsorbed adlayer mass. The results have, however, different physical contents. The optical techniques OWLS and ELM provide in most cases consistent and comparable results, which can be straightforwardly converted to adsorbed protein molar ('dry') mass. QCM-D, on the other hand, produces measured values that are generally higher in terms of mass. This, in turn, provides valuable, complementary information in two respects: (i) the mass calculated from the resonance frequency shift includes both protein mass and water that binds or hydrodynamically couples to the protein adlayer, and (ii) analysis of the energy dissipation in the adlayer and its magnitude in relation to the frequency shift (c.f. adsorbed mass) provides insight about the mechanical/structural properties such as viscoelasticity. © 2002 Elsevier Science B.V. All rights reserved.

Place, publisher, year, edition, pages
2002. Vol. 24, no 2, 155-170 p.
Keyword [en]
Adsorption, Albumin, Antibody reaction, Ellipsometry, Fibrinogen, Hemoglobin, Optical waveguide technique, Protein adsorption, Protein conformation, Quartz crystal microbalance, Surface properties, Titanium oxide
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-47103DOI: 10.1016/S0927-7765(01)00236-3OAI: oai:DiVA.org:liu-47103DiVA: diva2:267999
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Tengvall, Pentti

Search in DiVA

By author/editor
Tengvall, Pentti
By organisation
The Institute of TechnologyApplied Physics
In the same journal
Colloids and Surfaces B: Biointerfaces
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 783 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf