liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Neumann problems and isocapacitary inequalities
Dipartimento di Matematica e Applicazioni per l'Architettura, Università di Firenze, Piazza Ghiberti 27, 50122 Firenze, Italy.
Linköping University, The Institute of Technology. Linköping University, Department of Mathematics, Applied Mathematics.
2008 (English)In: Journal des Mathématiques Pures et Appliquées, ISSN 0021-7824, E-ISSN 1776-3371, Vol. 89, no 1, 71-105 p.Article in journal (Refereed) Published
Abstract [en]

A priori bounds for solutions to (nonlinear) elliptic Neumann problems in open subsets O of Rn are established via inequalities relating the Lebesgue measure of subsets of O to their relative capacity. Both norm and capacitary estimates for solutions, and norm estimates for their gradients are derived which improve classical results even in the case of the Laplace equation. © 2007 Elsevier Masson SAS. All rights reserved.

Place, publisher, year, edition, pages
2008. Vol. 89, no 1, 71-105 p.
Keyword [en]
A priori estimates, Capacity, Elliptic equations, Rearrangements
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-47288DOI: 10.1016/j.matpur.2007.10.001OAI: oai:DiVA.org:liu-47288DiVA: diva2:268184
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Maz´ya, Vladimir G.

Search in DiVA

By author/editor
Maz´ya, Vladimir G.
By organisation
The Institute of TechnologyApplied Mathematics
In the same journal
Journal des Mathématiques Pures et Appliquées
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 288 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf