liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interfacial chemistry of Alq3 and LiF with reactive metals
Research Laboratories, Eastman Kodak Company, Rochester, NY 14650-2132, United States.
Research Laboratories, Eastman Kodak Company, Rochester, NY 14650-2132, United States.
Research Laboratories, Eastman Kodak Company, Rochester, NY 14650-2132, United States.
Research Laboratories, Eastman Kodak Company, Rochester, NY 14650-2132, United States.
Show others and affiliations
2001 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 89, no 5, 2756-2765 p.Article in journal (Refereed) Published
Abstract [en]

The electronic structure and chemistry of interfaces between tris-(8-hydroxyquinoline) aluminum (Alq3) and representative group IA and IIA metals, Al, and Al/LiF have been studied by x-ray and ultraviolet photoelectron spectroscopies. Quantum-chemical calculations at the density functional theory level predict that the Alq3 radical anion is formed upon reaction with the alkali metals. In this case, up to three metal atoms can react with a given Alq3 molecule to form the trivalent anion. The anion formation results in a splitting of the N 1 s core level and formation of a new feature in the previously forbidden energy gap. Virtually identical spectra are observed in the Al/LiF/Alq3 system, leading to the conclusion that the radical anion is also formed when all three of these constituents are present. This is support by a simple thermodynamic model based on bulk heats of formation. In the absence of LiF or similar material, the reaction of Al with Alq3 appears to be destructive, with the deposited Al reacting directly with the quinolate oxygen. We proposed that in those circumstances where the radical anion is formed, it and not the cathode metal are responsible for the electron injection properties. This is borne out by producing excellent injecting contacts when Ag and Au are used as the metallic component of the cathode structure. © 2001 American Institute of Physics.

Place, publisher, year, edition, pages
2001. Vol. 89, no 5, 2756-2765 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-47467DOI: 10.1063/1.1324681OAI: oai:DiVA.org:liu-47467DiVA: diva2:268363
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Salaneck, William R

Search in DiVA

By author/editor
Salaneck, William R
By organisation
The Institute of TechnologySurface Physics and Chemistry
In the same journal
Journal of Applied Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 217 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf