liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sensitivity deviation: Instrumental linearity errors that influence concentration analyses and kinetic evaluation of biomolecular interactions
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
2000 (English)In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 15, no 9-10, 503-509 p.Article in journal (Refereed) Published
Abstract [en]

Many scientific instruments utilise multiple element detectors, e.g. CCD's or photodiode arrays, to monitor the change in a position of an optical pattern. For example, instruments for affinity biosensing based on surface plasmon resonance (SPR) or resonant mirror are equipped with such detectors. An important and desired property of these bioanalytical instruments is that the calculation of the movement or change in shape follows the true change. This is often not the case and it may lead to linearity errors, and to sensitivity errors. The sensitivity is normally defined as the slope of the calibration curve. A new parameter is introduced to account for the linearity errors, the sensitivity deviation, defined as the deviation from the undistorted slope of the calibration curve. The linearity error and the sensitivity deviation are intimately related and the sensitivity deviation may lead to misinterpretation of kinetic data, mass transport limitations and concentration analyses. Because the linearity errors are small (e.g. 10 pg/mm2 of biomolecules on the sensor surface) with regard to the dynamic range (e.g. 30 000 pg/mm2), they can be difficult to discover. However, the linearity errors are often not negligible with regard to a typical response (e.g. 0-100 pg/mm2), and may therefore cause serious problems. A method for detecting linearity errors is outlined. Further on, this paper demonstrates how integral linearity errors of less than 1% can result in a sensitivity deviation of 10%, a value that in our opinion cannot be ignored in biospecific interaction analysis (BIA). It should also be stressed out that this phenomenon also occurs in other instruments using array detectors. (C) 2000 Elsevier Science S.A.Many scientific instruments utilize multiple element detectors, e.g. CCD's or photodiode arrays, to monitor the change in a position of an optical pattern. For example, instruments for affinity biosensing based on surface plasmon resonance (SPR) or resonant mirror are equipped with such detectors. An important and desired property of these bioanalytical instruments is that the calculation of the movement or change in shape follows the true change. This is often not the case and it may lead to linearity errors, and to sensitivity errors. The sensitivity is normally defined as the slope of the calibration curve. A new parameter is introduced to account for the linearity errors, the sensitivity deviation, defined as the deviation from the undistorted slope of the calibration curve. The linearity error and the sensitivity deviation are intimately related and the sensitivity deviation may lead to misinterpretation of kinetic data, mass transport limitations and concentration analyses. Because the linearity errors are small (e.g. 10 pg/mm2 of biomolecules on the sensor surface) with regard to the dynamic range (e.g. 30 000 pg/mm2), they can be difficult to discover. However, the linearity errors are often not negligible with regard to a typical response (e.g. 0-100 pg/mm2), and may therefore cause serious problems. A method for detecting linearity errors is outlined. Further on, this paper demonstrates how integral linearity errors of less than 1% can result in a sensitivity deviation of 10%, a value that in our opinion cannot be ignored in biospecific interaction analysis (BIA). It should also be stressed out that this phenomenon also occurs in other instruments using array detectors.

Place, publisher, year, edition, pages
2000. Vol. 15, no 9-10, 503-509 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-47548DOI: 10.1016/S0956-5663(00)00109-3OAI: oai:DiVA.org:liu-47548DiVA: diva2:268444
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Johansen, KnutLundström, IngemarLiedberg, Bo

Search in DiVA

By author/editor
Johansen, KnutLundström, IngemarLiedberg, Bo
By organisation
The Institute of TechnologyDepartment of Physics, Chemistry and BiologyApplied Physics Sensor Science and Molecular Physics
In the same journal
Biosensors & bioelectronics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 134 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf