liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Isotopic study of ethanol dehydrogenation over a palladium membrane
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
2000 (English)In: Journal of Catalysis, ISSN 0021-9517, E-ISSN 1090-2694, Vol. 195, no 2, 376-382 p.Article in journal (Refereed) Published
Abstract [en]

The dehydrogenation of ethanol and the subsequent permeation were studied on a Pd membrane in a continuous ethanol supply. Hydrogen could not be extracted as efficiently from ethanol as from methanol. In ethanol, at least four of the six hydrogen atoms were not available for permeation because of methane formation. Hydrogens bonded to a carbon atom in a C-O group were available for permeation, while hydrogen atoms bonded to a carbon atom without oxygen were not. The efficiency of hydrogen permeation from ethanol was 5% compared to that of pure hydrogen, which could be compared to 25% for methanol compared to pure hydrogen. The hydrogen permeation could be enhanced by adding CO to the EtOH + O2 supply. The permeation probability of the hydrogen bonded to the methylene hydrogen increased while the water formation with this hydrogen atom decreased. Acetic acid was formed upstream when oxygen was in excess. The differently bonded hydrogen atoms in an ethanol molecule experienced different reaction pathways. The results did not contradict the models made from surface experiments in ultrahigh vacuum by Davis and Barteau, Holroyd and Bowker, or Bowker et al.

Place, publisher, year, edition, pages
2000. Vol. 195, no 2, 376-382 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-47562DOI: 10.1006/jcat.2000.2996OAI: oai:DiVA.org:liu-47562DiVA: diva2:268458
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Ekedahl, Lars-GunnarDannetun, Helen

Search in DiVA

By author/editor
Ekedahl, Lars-GunnarDannetun, Helen
By organisation
The Institute of TechnologyDepartment of Physics, Chemistry and BiologyApplied Physics
In the same journal
Journal of Catalysis
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf