liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Excitation properties of hydrogen-related photoluminescence in 6H-SiC
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-5768-0244
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
Show others and affiliations
2000 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 62, no 11, 7162-7168 p.Article in journal (Refereed) Published
Abstract [en]

We have studied the excitation properties of a well-known hydrogen-related bound exciton (H-BE) photoluminescence (PL) in 6H-SiC. In the case of the so-called primary H-BE's, photoluminescence excitation (PLE) spectroscopy reveals several excited states that have not been reported previously. In order to explain these states we propose a pseudodonor model. The primary H-BE's are thus regarded as donors where strongly localized holes serve as the positive cores. From a comparison between the PLE spectra of the three different primary H-BE's corresponding to the three inequivalent substitutional lattice sites in 6H-SiC, we attempt to distinguish between the hexagonal and cubic lattice sites. We have also investigated the dependence of the optically induced quenching of the H-BE PL on the energy of the exciting light. We observe that the quenching of the H-BE PL is only efficient when the exciting light has energy above the threshold for phonon-assisted free-exciton (FE) formation or when its energy coincides with the energy needed for resonant absorption into the H-BE states. When creating FE's, we observe different types of behavior depending on the initial conditions. We argue that our results are best explained by the existence of two configurations of the same charge state of the H defect, namely a stable one: A (giving rise to the H-BE PL), and a metastable one: B (not revealed in the PL spectrum). The recombination of excitons bound at these two configurations can give rise to the transformations A?B and B?A. The existence of the B configuration is revealed through the effect of the B?A process on the temporal changes of the H-BE PL.

Place, publisher, year, edition, pages
2000. Vol. 62, no 11, 7162-7168 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-47581DOI: 10.1103/PhysRevB.62.7162OAI: oai:DiVA.org:liu-47581DiVA: diva2:268477
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Henry, AnneIvanov, Ivan GueorguievJanzén, Erik

Search in DiVA

By author/editor
Henry, AnneIvanov, Ivan GueorguievJanzén, Erik
By organisation
Department of Physics, Chemistry and BiologyThe Institute of TechnologySemiconductor Materials
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 87 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf