liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of intermittent contact mode AFM probes by HREM and using atomically sharp CeO2 ridges as tip characterizer
Skårman, B., Natl. Ctr. High Resolution E., Department of Inorganic Chemistry 2, Lund University, SE-221 00 Lund, Sweden.
Natl. Ctr. High Resolution E., Department of Inorganic Chemistry 2, Lund University, SE-221 00 Lund, Sweden.
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics .ORCID iD: 0000-0002-1744-7322
Show others and affiliations
2000 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 16, no 15, p. 6267-6277Article in journal (Refereed) Published
Abstract [en]

The imaging process of the atomic force microscope (AFM) in contact, noncontact, and intermittent contact mode is still debated after more than a decade of widespread use, in particular when imaged features are approaching atomic dimensions. Several models for the interaction between the tip and the surface have been suggested, but generally they all need an exact description of the geometry of either the tip, the surface, or both. We present here a tip characterizer with close to reproducible geometry, exactly known angles of all surfaces, and sharp features with close to atomic dimension. It has been tested on three commercial AFM probes and a laboratory-made electron-beam-deposited tip, sharpened by oxygen plasma etching. High-resolution transmission electron microscopy has been used to unambiguously verify the tip shapes down to atomic dimensions, both before and after imaging in intermittent contact mode. The effect on the recorded AFM images is shown of tip shape, tip wear, spallation, and accumulation on the tip of amorphous and crystalline debris. The imaging is shown to be a dynamic event, with a continuously changing tip and occasional catastrophic events that give abrupt changes in imaging conditions. The tips are severely worn down already after scanning a few centimeters, but accumulated amorphous material may still give it imaging capabilities in the nanometer range, even with having a tip radius exceeding 130 nm. Accumulated amorphous material seems to be more important than previously believed. Procedures for tip in situ characterization and reliable imaging are suggested.

Place, publisher, year, edition, pages
2000. Vol. 16, no 15, p. 6267-6277
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-47618DOI: 10.1021/la000078tOAI: oai:DiVA.org:liu-47618DiVA, id: diva2:268514
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Helmersson, Ulf

Search in DiVA

By author/editor
Helmersson, Ulf
By organisation
The Institute of TechnologyPlasma and Coating Physics
In the same journal
Langmuir
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 124 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf