liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt144",{id:"formSmash:upper:j_idt144",widgetVar:"widget_formSmash_upper_j_idt144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt145_j_idt147",{id:"formSmash:upper:j_idt145:j_idt147",widgetVar:"widget_formSmash_upper_j_idt145_j_idt147",target:"formSmash:upper:j_idt145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Wavelet and Fourier methods for solving the sideways heat equationPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2000 (English)In: SIAM Journal on Scientific Computing, ISSN 1064-8275, E-ISSN 1095-7197, Vol. 21, no 6, p. 2187-2205Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2000. Vol. 21, no 6, p. 2187-2205
##### National Category

Engineering and Technology
##### Identifiers

URN: urn:nbn:se:liu:diva-47660DOI: 10.1137/S1064827597331394OAI: oai:DiVA.org:liu-47660DiVA, id: diva2:268556
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt432",{id:"formSmash:j_idt432",widgetVar:"widget_formSmash_j_idt432",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt438",{id:"formSmash:j_idt438",widgetVar:"widget_formSmash_j_idt438",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt444",{id:"formSmash:j_idt444",widgetVar:"widget_formSmash_j_idt444",multiple:true});
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13
##### In thesis

We consider an inverse heat conduction problem, the sideways heat equation, which is a model of a problem, where one wants to determine the temperature on both sides of a thick wall, but where one side is inaccessible to measurements. Mathematically it is formulated as a Cauchy problem for the heat equation in a quarter plane, with data given along the line *x* = 1, where the solution is wanted for 0 ≤ *x* < 1.

The problem is ill-posed, in the sense that the solution (if it exists) does not depend continuously on the data. We consider stabilizations based on replacing the time derivative in the heat equation by wavelet-based approximations or a Fourier-based approximation. The resulting problem is an initial value problem for an ordinary differential equation, which can be solved by standard numerical methods, e.g., a Runge–Kutta method.

We discuss the numerical implementation of Fourier and wavelet methods for solving the sideways heat equation. Theory predicts that the Fourier method and a method based on Meyer wavelets will give equally good results. Our numerical experiments indicate that also a method based on Daubechies wavelets gives comparable accuracy. As test problems we take model equations with constant and variable coefficients. We also solve a problem from an industrial application with actual measured data.

1. Numerical methods for inverse heat conduction problems$(function(){PrimeFaces.cw("OverlayPanel","overlay255742",{id:"formSmash:j_idt705:0:j_idt709",widgetVar:"overlay255742",target:"formSmash:j_idt705:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1141",{id:"formSmash:j_idt1141",widgetVar:"widget_formSmash_j_idt1141",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1194",{id:"formSmash:lower:j_idt1194",widgetVar:"widget_formSmash_lower_j_idt1194",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1195_j_idt1197",{id:"formSmash:lower:j_idt1195:j_idt1197",widgetVar:"widget_formSmash_lower_j_idt1195_j_idt1197",target:"formSmash:lower:j_idt1195:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});