liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
EPR and ENDOR studies of deuteron hyperfine and quadrupole coupling in center dot CD(COOD)(2): Experimental and theoretical estimates of electric field gradients from an alpha-carbon
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Chemical Physics .
2000 (English)In: Journal of Physical Chemistry A, ISSN 1089-5639, Vol. 104, no 27, 6372-6379 p.Article in journal (Refereed) Published
Abstract [en]

In single crystals of malonic acid grown from heavy water, the methylene protons have been partially exchanged with deuterons. Upon X irradiation at room temperature, the (CD)-C-.(COOD)(2) radical is formed in an amount comparable to the (CH)-C-.(COOD): radical species. In the present work, EPR and ENDOR analyses of the a-deuteron hyperfine coupling (hfc) and nuclear quadrupolar coupling (nqc) tensors at room temperature have been performed. The hyperfine coupling tensor is, when scaled with the differences in the nuclear g-factor, almost identical to the a-proton coupling of the (CH)-C-.(COOH)(2) radical at room temperature. The quadrupolar coupling tensor was found to be virtually coaxial with the hyperfine coupling tensor. The quadrupolar coupling constant is 149.8 +/- 1 kHz, and the asymmetry factor eta = 0.092 +/- 0.020. It is known that, at room temperature, the malonic acid radical exhibits thermal motion between two potential energy minima separated by about +/-12 degrees. Assuming that the observed hfe and nqc tensors are the result of thermal avenging between these two conformations of the radical, a simple two-site jump model was used to estimate the rigid-limit tensors. The most significant result obtained was for the nyc tensor, for which the calculations resulted in a quadrupolar coupling constant of 160 kHz and an asymmetry factor eta = 0.026. These values are fairly close to the nqc parameters for the methylene deuterons in malonic acid at low temperature. The quadrupolar coupling tensor has been theoretically modeled using Slater orbitals and formal electronic populations, as well as electron populations obtained from RHF/CI INDO-type calculations. The simple model to compute the electric field gradient at the alpha-deuteron caused by the charge distribution at the sp(2)-hybridized alpha-carbon was found to be as successful as more advanced methods. Furthermore, density functional theoretical (DFT) calculations for both the malonic acid radical and the native malonic acid molecule have been performed. Field gradients calculated by the DFT method significantly overestimate the quadrupolar tensors for both the alpha-deuteron of the radical and the methylene deuterons of the malonic acid molecule. Calculations using electron populations from the RHF/CI INDO calculations show that contributions to the quadrupolar coupling tensor from electrons and nuclei beyond the nearest-neighbor atom of the Jeuteron are significant.

Place, publisher, year, edition, pages
2000. Vol. 104, no 27, 6372-6379 p.
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-47931DOI: 10.1021/jp000283hOAI: diva2:268827
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2011-01-14

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lund, Anders
By organisation
The Institute of TechnologyChemical Physics
In the same journal
Journal of Physical Chemistry A
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 18 hits
ReferencesLink to record
Permanent link

Direct link