liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt211",{id:"formSmash:upper:j_idt211",widgetVar:"widget_formSmash_upper_j_idt211",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt212_j_idt214",{id:"formSmash:upper:j_idt212:j_idt214",widgetVar:"widget_formSmash_upper_j_idt212_j_idt214",target:"formSmash:upper:j_idt212:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On the connectedness of the locus of real Riemann surfacesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2002 (English)In: Annales Academiae Scientiarum Fennicae Mathematica, ISSN 1239-629X, E-ISSN 1798-2383, Vol. 27, no 2, p. 341-356Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2002. Vol. 27, no 2, p. 341-356
##### National Category

Engineering and Technology
##### Identifiers

URN: urn:nbn:se:liu:diva-48760OAI: oai:DiVA.org:liu-48760DiVA, id: diva2:269656
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt573",{id:"formSmash:j_idt573",widgetVar:"widget_formSmash_j_idt573",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt579",{id:"formSmash:j_idt579",widgetVar:"widget_formSmash_j_idt579",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt587",{id:"formSmash:j_idt587",widgetVar:"widget_formSmash_j_idt587",multiple:true});
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-12

It is well known that the functorial equivalence between pairs (X, sigma), where X is a Riemann surface which admits an antiholomorphic involution (symmetry) sigma: X --> X, and real algebraic curves. We shall refer to such Riemann surfaces as real Riemann surfaces, following Klein's terminology. We consider the sets M-g(R) and M-g(2R) of real curves and :real hyperelliptic curves, respectively in the moduli space M-g of complex algebraic curves of genus g. In this paper we prove that any real hyperelliptic Riemann surface can be quasiconformally deformed, preserving the real and hyperelliptic character, to a real hyperelliptic Riemann surface (X, sigma), such that X admits a symmetry tau, where Fix (tau) is connected and non-separating. As a consequence, we obtain the connectedness of the sets M-g(2R)(subset of M-g) of all real hyperelliptic Riemann surfaces of genus g and M-g(R)(subset of M-g) of all real Riemann surfaces of given genus g using a procedure different from the one given by Seppala for M-g(2R) and Buser, Seppala and Silhol for M-g(R). A Riemann surface X is called a p-gonal Riemann surface, where p is a prime, if there exists a p-fold covering map from X onto the Riemann sphere. We prove ill this paper that the subset of real p-gonal Riemann surfaces, p greater than or equal to 3, is not a connected subset of M-g in general. This generalizes a result of Gross and Harris for real trigonal algebraic curves.

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1814",{id:"formSmash:j_idt1814",widgetVar:"widget_formSmash_j_idt1814",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1902",{id:"formSmash:lower:j_idt1902",widgetVar:"widget_formSmash_lower_j_idt1902",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1903_j_idt1905",{id:"formSmash:lower:j_idt1903:j_idt1905",widgetVar:"widget_formSmash_lower_j_idt1903_j_idt1905",target:"formSmash:lower:j_idt1903:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});