liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On weighted positivity and the Wiener regularity of a boundary point for the fractional Laplacian
Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden.
2000 (English)In: Arkiv för matematik, ISSN 0004-2080, Vol. 38, no 1, 53-75 p.Article in journal (Refereed) Published
Abstract [en]

A sufficient condition for the Wiener regularity of a boundary point with respect to the operator (-Delta)(mu) in R-n, ngreater than or equal to1, is obtained, for muis an element of(0, 1/2n)\(1, 1/2n-1). This extends some results for the polyharmonic operator obtained by Maz'ya and Maz'ya-Donchev. As in the polyharmonic case, the proof is based on a weighted positivity property of (-Delta)(mu), where the weight is a fundamental solution of this operator. It is shown that this property holds for mu as above while there is an interval [A(n), 1/2n - A(n)], where A(n) -->1, as n-->infinity, with mu-values for which the property does not hold. This interval is non-empty for ngreater than or equal to8.

Place, publisher, year, edition, pages
2000. Vol. 38, no 1, 53-75 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-48949OAI: oai:DiVA.org:liu-48949DiVA: diva2:269845
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2011-01-14

Open Access in DiVA

No full text

In the same journal
Arkiv för matematik
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf