liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A 'Model-on-Demand' identification methodology for non-linear process systems
Arizona State Univ, Dept Chem & Mat Engn, Control Syst Engn Lab, Tempe, AZ 85287 USA Linkoping Univ, Dept Elect Engn, Div Automat Control, SE-58183 Linkoping, Sweden.
Arizona State Univ, Dept Chem & Mat Engn, Control Syst Engn Lab, Tempe, AZ 85287 USA Linkoping Univ, Dept Elect Engn, Div Automat Control, SE-58183 Linkoping, Sweden.
Arizona State Univ, Dept Chem & Mat Engn, Control Syst Engn Lab, Tempe, AZ 85287 USA Linkoping Univ, Dept Elect Engn, Div Automat Control, SE-58183 Linkoping, Sweden.
2001 (English)In: International Journal of Control, ISSN 0020-7179, E-ISSN 1366-5820, Vol. 74, no 18, 1708-1717 p.Article in journal (Refereed) Published
Abstract [en]

An identification methodology based on multi-level pseudo-random sequence (multi-level PRS) input signals and 'Model-on-Demand' (MoD) estimation is presented for single-input, single-output non-linear process applications. 'Model-on-Demand' estimation allows for accurate prediction of non-linear systems while requiring few user choices and without solving a non-convex optimization problem, as is usually the case with global modelling techniques. By allowing the user to incorporate a priori information into the specification of design variables for multi-level PRS input signals, a sufficiently informative input-output dataset for MoD estimation is generated in a 'plant-friendly' manner. The usefulness of the methodology is demonstrated in case studies involving the identification of a simulated rapid thermal processing (RTP) reactor and a pilot-scale brine-water mixing tank. On the resulting datasets, MoD estimation displays performance comparable to that achieved via semi-physical modelling and semi-physical modelling combined with neural networks. The MoD estimator, however, achieves this level of performance with substantially lower engineering effort.

Place, publisher, year, edition, pages
2001. Vol. 74, no 18, 1708-1717 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-49036OAI: oai:DiVA.org:liu-49036DiVA: diva2:269932
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-12

Open Access in DiVA

No full text

In the same journal
International Journal of Control
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf