liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synchrotron x-ray diffraction and transmission electron microscopy studies of interfacial reaction paths and kinetics during annealing of fully-002-textured Al/TiN bilayers
Univ Illinois, Dept Mat Sci, Urbana, IL 61801 USA Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA IBM Corp, Thomas J Watson Res Ctr, Yorktown Heights, NY 10598 USA Linkoping Univ, Dept Phys, Div Thin Film, S-58183 Linkoping, Sweden.
Univ Illinois, Dept Mat Sci, Urbana, IL 61801 USA Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA IBM Corp, Thomas J Watson Res Ctr, Yorktown Heights, NY 10598 USA Linkoping Univ, Dept Phys, Div Thin Film, S-58183 Linkoping, Sweden.
Show others and affiliations
2001 (English)In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 19, no 1, 182-191 p.Article in journal (Refereed) Published
Abstract [en]

Dense fully-002-textured polycrystalline TiN layers, 110 nm thick with a N/TI ratio of 1.02+/-0.03, were grown on SiO2 by ultrahigh vacuum magnetically unbalanced magnetron sputter deposition at T-s = 450 degreesC in pure N-2 utilizing high N-2(+)/Ti Aux ratios and low energy (E-N2(+) = 20 eV) ion irradiation of the growing film. Al overlayers, 160 nm thick and possessing a strong 002 texture inherited from the underlying TiN, were then deposited at T-s = 100 degreesC without breaking vacuum. Synchrotron x-ray diffraction was used to follow interfacial reaction paths and kinetics during postdeposition annealing as a function of time (t(a) = 200 - 1200 s) and temperature (T-a = 500 - 580 degreesC). Changes in bilayer microstructure and microchemistry were investigated using transmission electron microscopy (TEM) and scanning TEM to obtain compositional maps of cross-sectional and plan-view specimens by energy dispersive x-ray analysis. The initial bilayer reaction step during annealing involves the formation of a continuous AIN interfacial layer which, due to local epitaxy with the TIN underlayer, grows with the metastable zinc-blende structure up to a thickness x similar or equal to3-5 nm, and with the wurtzite structure thereafter. Ti atoms released during AIN formation diffuse into the Al layer leading to supersaturation followed by the nucleation of dispersed regions of tetragonal Al3Ti with inherited 002 preferred orientation. The aluminide domains grow rapidly until they reach the free surface, thereafter growth is two dimensional as Al3Ti grains spread radially. The overall activation energy for Al3Ti formation and growth is 1.8+/-0.1 eV. In situ synchrotron x-ray diffraction analyses during thermal ramping show that the onset temperature for interfacial reactions was increased by more than 100 degreesC for fully dense completely 002-textured bilayers compared to Ill-textured bilayers deposited by conventional reactive sputter deposition. (C) 2001 American Vacuum Society.

Place, publisher, year, edition, pages
2001. Vol. 19, no 1, 182-191 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-49409OAI: oai:DiVA.org:liu-49409DiVA: diva2:270305
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-12

Open Access in DiVA

No full text

Authority records BETA

Hultman, Lars

Search in DiVA

By author/editor
Hultman, Lars
By organisation
The Institute of TechnologyThin Film Physics
In the same journal
Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 108 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf