liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theoretical calculations of excited state absorption
Royal Inst Technol, SE-10044 Stockholm, Sweden Univ Lund, Ctr Chem, Dept Theoret Chem, SE-22100 Lund, Sweden Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden.
Royal Inst Technol, SE-10044 Stockholm, Sweden Univ Lund, Ctr Chem, Dept Theoret Chem, SE-22100 Lund, Sweden Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden.
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Computational Physics .
Royal Inst Technol, SE-10044 Stockholm, Sweden Univ Lund, Ctr Chem, Dept Theoret Chem, SE-22100 Lund, Sweden Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden.
2000 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 2, no 23, 5357-5363 p.Article in journal (Refereed) Published
Abstract [en]

Excitation energies and transition dipole moments between excited electronic states have been calculated using various theoretical methods to investigate the ability to describe excited state absorption. Quadratic response theory is used in combination with self-consistent field, multi-configurational self-consistent field, and coupled-cluster electronic structure methods. The results of these different methods are compared. The set of molecules considered includes lithium hydride, carbon monoxide, formaldehyde, formamide, and sym-tetrazine. For some of the molecules results are also compared with the method of applying linear response theory to an excited state wavefunction separately optimized by means of the multi-configurational self-consistent field method.

Place, publisher, year, edition, pages
2000. Vol. 2, no 23, 5357-5363 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-49483OAI: oai:DiVA.org:liu-49483DiVA: diva2:270379
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-12

Open Access in DiVA

No full text

Authority records BETA

Norman, Patrick

Search in DiVA

By author/editor
Norman, Patrick
By organisation
The Institute of TechnologyComputational Physics
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 398 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf