liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Large-scale numerical simulations of ion beam instabilities in unmagnetized astrophysical plasmas
Linköping University, Department of Science and Technology, Visual Information Technology and Applications (VITA). Linköping University, The Institute of Technology.ORCID iD: 0000-0003-4055-0552
Linköping University, Department of Science and Technology, Visual Information Technology and Applications (VITA). Linköping University, The Institute of Technology.ORCID iD: 0000-0002-9288-5322
Linköping University, Department of Science and Technology, Visual Information Technology and Applications (VITA). Linköping University, The Institute of Technology.ORCID iD: 0000-0002-9466-9826
Linkoping Univ, Inst Technol & Nat Sci, S-60174 Norrkoping, Sweden UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
2000 (English)In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 7, no 12, p. 5171-5181Article in journal (Refereed) Published
Abstract [en]

Collisionless quasiperpendicular shocks with magnetoacoustic Mach numbers exceeding a certain threshold are known to reflect a fraction of the upstream ion population. These reflected ions drive instabilities which, in a magnetized plasma, can give rise to electron acceleration. In the case of shocks associated with supernova remnants (SNRs), electrons energized in this way may provide a seed population for subsequent acceleration to highly relativistic energies. If the plasma is weakly magnetized, in the sense that the electron cyclotron frequency is much smaller than the electron plasma frequency omega (p), a Buneman instability occurs at omega (p). The nonlinear evolution of this instability is examined using particle-in-cell simulations, with initial parameters which are representative of SNR shocks. For simplicity, the magnetic field is taken to be strictly zero. It is shown that the instability saturates as a result of electrons being trapped by the wave potential. Subsequent evolution of the waves depends on the temperature of the background protons T-i and the size of the simulation box L. If T-i is comparable to the initial electron temperature T-e, and L is equal to one Buneman wavelength lambda (0), the wave partially collapses into low frequency waves and backscattered waves at around omega (p). If, on the other hand, T-i much greater thanT(e) and L = lambda (0), two high frequency waves remain in the plasma. One of these waves, excited at a frequency slightly lower than omega (p), may be a Bernstein-Greene-Kruskal mode. The other wave, excited at a frequency well above omega (p), is driven by the relative streaming of trapped and untrapped electrons. In a simulation with L = 4 lambda (0), the Buneman wave collapses on a time scale consistent with the excitation of sideband instabilities. Highly energetic electrons were not observed in any of these simulations, suggesting that the Buneman instability can only produce strong electron acceleration in a magnetized plasma. [S1070-664X(00)02712-9].

Place, publisher, year, edition, pages
2000. Vol. 7, no 12, p. 5171-5181
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-49496OAI: oai:DiVA.org:liu-49496DiVA, id: diva2:270392
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-12

Open Access in DiVA

No full text in DiVA

Authority records

Dieckmann, Mark ELjung, PatricYnnerman, Anders

Search in DiVA

By author/editor
Dieckmann, Mark ELjung, PatricYnnerman, Anders
By organisation
Visual Information Technology and Applications (VITA)The Institute of Technology
In the same journal
Physics of Plasmas
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 301 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf