liu.seSearch for publications in DiVA
Change search

Cite
Citation style
• apa
• harvard1
• ieee
• modern-language-association-8th-edition
• vancouver
• oxford
• Other style
More styles
Language
• de-DE
• en-GB
• en-US
• fi-FI
• nn-NO
• nn-NB
• sv-SE
• Other locale
More languages
Output format
• html
• text
• asciidoc
• rtf
Uniform bounds for limited sets and applications to bounding sets.
Linköping University, The Institute of Technology. Linköping University, Department of Mathematics, Applied Mathematics.
2000 (English)In: Mathematica Scandinavica, ISSN 0025-5521, E-ISSN 1903-1807, Vol. 86, no 2, p. 223-243Article in journal (Refereed) Published
##### Abstract [en]

A set D in a Banach space E is limited if lim sup(k-->infinity) sup(z epsilon D)\phi k(z)\ > 0 double right arrow sup(\\z\\=1) lim sup(k-->infinity) \phi k(z)\ > 0 for every sequence (phi k) subset of E*. It is studied how this implication can be quantified, for example if there exists a constant C > 0 such that lim sup(k-->infinity)sup(z epsilon D)\phi k(z)\ = 1 double right arrow sup\\z\\ = 1 lim sup(k-->infinity) \phi k(z)\ greater than or equal to C for every sequence (phi k) subset of E*, is studied. Relatively compact sets and limited sets in l(infinity) - among others the unit vectors - have uniform bounds in this sense. A fundamental example of a limited set without any uniform bounds is constructed. A set D is called bounding if f (D) is bounded for every entire function on E. That bounding sets are uniformly limited and that strongly bounding sets are limited in the strongest sense are proved. Examples show that the convex hull of bounding sets in general are not bounding and that bounding sets in general does not have Grothendieck's incapsulating property as relatively weakly compact sets have.

##### Place, publisher, year, edition, pages
2000. Vol. 86, no 2, p. 223-243
##### National Category
Engineering and Technology
##### Identifiers
OAI: oai:DiVA.org:liu-49669DiVA, id: diva2:270565
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-12

#### Open Access in DiVA

No full text in DiVA

Josefson, Bengt

#### Search in DiVA

Josefson, Bengt
##### By organisation
The Institute of TechnologyApplied Mathematics
##### In the same journal
Mathematica Scandinavica
##### On the subject
Engineering and Technology

urn-nbn

#### Altmetric score

urn-nbn
Total: 16 hits

Cite
Citation style
• apa
• harvard1
• ieee
• modern-language-association-8th-edition
• vancouver
• oxford
• Other style
More styles
Language
• de-DE
• en-GB
• en-US
• fi-FI
• nn-NO
• nn-NB
• sv-SE
• Other locale
More languages
Output format
• html
• text
• asciidoc
• rtf