liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Metal-metal bonding in tetracyanometalates (M = PtII, Pd II, NiII) of monovalent thallium. Crystallographic and spectroscopic characterization of the new compounds Tl2Ni(CN) 4 and Tl2Pd(CN)4
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
Department of Chemistry, Bowdoin College, Brunswick, ME 04011-8466, United States.
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, Leninsky Prospect 31, 119991 Moscow, Russian Federation.
Chemistry Department of M. V. Lomonosov, Moscow State University, Leninskie Gori 1, 119992 Moscow, Russian Federation.
Show others and affiliations
2007 (English)In: Inorganic Chemistry, ISSN 0020-1669, Vol. 46, no 11, 4642-4653 p.Article in journal (Refereed) Published
Abstract [en]

The new crystalline compounds Tl2Ni(CN)4 and Tl 2Pd(CN)4 were synthesized by several procedures. The structures of the compounds were determined by single-crystal X-ray diffraction. The compounds are isostructural with the previously reported platinum analogue, Tl2Pt(CN)4. A new synthetic route to the latter compound is also suggested. In contrast to the usual infinite columnar stacking of [M(CN)4]2- ions with short intrachain M-M separations, characteristic of salts of tetracyanometalates of NiII, Pd II, and PtII, the structure of the thallium compounds is noncolumnar with the two TlI ions occupying axial vertices of a distorted pseudo-octahedron of the transition metal, [MTl2C 4], The Tl-M distances in the compounds are 3.0560(6), 3.1733(7), and 3.140(1) Å for NiII, PdII, and PtII, respectively. The short Tl-Ni distance in Tl2Ni(CN)4 is the first example of metal-metal bonding between these two metals. The strength of the metal-metal bonds in this series of compounds was assessed by means of vibrational spectroscopy. Rigorous calculations, performed on the molecules in D4h point group symmetry, provide force constants for the Tl-M stretching vibration constants of 146.2, 139.6, and 156.2 N/m for the Ni II, PdII, and PtII compounds, respectively, showing the strongest metal-metal bonding in the case of the Tl-Pt compound. Amsterdam density-functional calculations for isolated Tl2M(CN) 4 molecules give Tl-M geometry-optimized distances of 2.67, 2.80, and 2.84 Å for M = NiII, PdII, and PtII, respectively. These distances are all substantially shorter than the experimental values, most likely because of intermolecular Tl-N interactions in the solid compounds. Time-dependent density-functional theory calculations reveal a low-energy, allowed transition in all three compounds that involves excitation from an a1g orbital of mixed Tl 6pz-M nd z2 character to an a2u orbital of dominant Tl 6pz character. © 2007 American Chemical Society.

Place, publisher, year, edition, pages
2007. Vol. 46, no 11, 4642-4653 p.
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-49699DOI: 10.1021/ic062092kOAI: diva2:270595
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2011-01-11

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Maliarik, Mikhail
By organisation
The Institute of TechnologyDepartment of Physics, Chemistry and Biology
In the same journal
Inorganic Chemistry
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 17 hits
ReferencesLink to record
Permanent link

Direct link