liu.seSearch for publications in DiVA

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt155",{id:"formSmash:upper:j_idt153:j_idt155",widgetVar:"widget_formSmash_upper_j_idt153_j_idt155",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Capacitary estimates for solutions of the Dirichlet problem for second order elliptic equations in divergence formPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2000 (English)In: Potential Analysis, ISSN 0926-2601, Vol. 12, no 1, 81-113 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2000. Vol. 12, no 1, 81-113 p.
##### Keyword [en]

second order elliptic equations in divergence form, Dirichlet problem, Holder continuity, capacitary interior diameter, Phragmen-Lindelof theorem
##### National Category

Engineering and Technology
##### Identifiers

URN: urn:nbn:se:liu:diva-49846OAI: oai:DiVA.org:liu-49846DiVA: diva2:270742
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt400",{id:"formSmash:j_idt400",widgetVar:"widget_formSmash_j_idt400",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt406",{id:"formSmash:j_idt406",widgetVar:"widget_formSmash_j_idt406",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt413",{id:"formSmash:j_idt413",widgetVar:"widget_formSmash_j_idt413",multiple:true});
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2016-05-04

We consider the Dirichlet problem for A-harmonic functions, i.e. the solutions of the uniformly elliptic equation div(A(x)del u(x)) = 0 in an n-dimensional domain Omega, n greater than or equal to 3. The matrix A is assumed to have bounded measurable entries. We obtain pointwise estimates for the A-harmonic functions near a boundary point. The estimates are in terms of the Wiener capacity and the so called capacitary interior diameter. They imply pointwise estimates for the A-harmonic measure of the domain Omega, which in turn lead to a sufficient condition for the Holder continuity of A-harmonic functions at a boundary point. The behaviour of A-harmonic functions at infinity and near a singular point is also studied and theorems of Phragmen-Lindelof type, in which the geometry of the boundary is taken into account, are proved. We also obtain pointwise estimates for the Green function for the operator -div(A(.)del u(.)) in a domain Omega and for the solutions of the nonhomogeneous equation -div(A(x)del u(x)) = mu with measure on the right-hand side.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1144",{id:"formSmash:lower:j_idt1144",widgetVar:"widget_formSmash_lower_j_idt1144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1145_j_idt1147",{id:"formSmash:lower:j_idt1145:j_idt1147",widgetVar:"widget_formSmash_lower_j_idt1145_j_idt1147",target:"formSmash:lower:j_idt1145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});