liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On prediction intervals based on predictive likelihood or bootstrap methods
Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden.
Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden.
Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden.
1999 (English)In: Biometrika, ISSN 0006-3444, E-ISSN 1464-3510, Vol. 86, no 4, 871-880 p.Article in journal (Refereed) Published
Abstract [en]

We argue that prediction intervals based on predictive likelihood do not correct for curvature with respect to the parameter value when they implicitly approximate an unknown probability density. Partly as a result of this difficulty, the order of coverage error associated with predictive intervals and predictive limits is equal to only the inverse of sample size. In this respect those methods do not improve on the simpler,'naive' or 'estimative' approach. Moreover, in cases of practical importance the latter can be preferable, in terms of both the size and sign of coverage error. We show that bootstrap calibration of both naive and predictive-likelihood approaches increases coverage accuracy of prediction intervals by an order of magnitude, and, in the case of naive intervals, preserves that method's numerical and analytical simplicity. Therefore, we argue, the bootstrap-calibrated naive approach is a particularly competitive alternative to more conventional, but more complex, techniques based on predictive likelihood.

Place, publisher, year, edition, pages
1999. Vol. 86, no 4, 871-880 p.
Keyword [en]
approximate predictive likelihood, Bayesian methods, bootstrap calibration, bootstrap iteration, coverage accuracy, double bootstrap, estimative predictive likelihood, Pareto distribution
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-49891OAI: oai:DiVA.org:liu-49891DiVA: diva2:270787
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-12

Open Access in DiVA

No full text

In the same journal
Biometrika
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 21 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf