liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of high-temperature electron irradiation on the formation of radiative defects in silicon
Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-7155-7103
Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden Swedish Def Res Estab, S-58111 Linkoping, Sweden Inst Solid State & Semicond Phys, Minsk 220072, Byelarus Univ Lund, S-22100 Lund, Sweden.
Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden Swedish Def Res Estab, S-58111 Linkoping, Sweden Inst Solid State & Semicond Phys, Minsk 220072, Byelarus Univ Lund, S-22100 Lund, Sweden.
Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden Swedish Def Res Estab, S-58111 Linkoping, Sweden Inst Solid State & Semicond Phys, Minsk 220072, Byelarus Univ Lund, S-22100 Lund, Sweden.
Show others and affiliations
1999 (English)In: Physica. B, Condensed matter, ISSN 0921-4526, E-ISSN 1873-2135, Vol. 274, p. 528-531Article in journal (Refereed) Published
Abstract [en]

Defect formation processes in silicon caused by electron irradiation performed at elevated temperatures are studied in detail using photoluminescence (PL) spectroscopy. The use of high temperature during electron irradiation has been found to affect considerably the defect formation process, In particular, several new unknown excitonic PL lines were discovered in carbon-rich Si wafers subjected to electron irradiation at temperatures higher than 450 degrees C, The dominant new luminescent center gives rise to a bound exciton PL emission at 0.961 eV. The center is shown to be efficiently created by electron irradiation at temperatures from 450 degrees C up to 600 degrees C. The electronic structure of the 0.961 eV PL center can be described as a pseudodonor case, where the hole is strongly bound at a level 187 meV above the valence band, while the electron is a effective-mass-like particle weakly bound by approximate to 21 meV in the BE state, (C) 1999 Elsevier Science B.V. All rights reserved.

Place, publisher, year, edition, pages
1999. Vol. 274, p. 528-531
Keywords [en]
silicon, electron irradiation, photoluminescence, defect
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-49927OAI: oai:DiVA.org:liu-49927DiVA, id: diva2:270823
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-12

Open Access in DiVA

No full text in DiVA

Authority records

Buyanova, Irina AMonemar, Bo

Search in DiVA

By author/editor
Buyanova, Irina AMonemar, Bo
By organisation
Functional Electronic MaterialsThe Institute of TechnologyMaterials Science
In the same journal
Physica. B, Condensed matter
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 213 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf