liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt295",{id:"formSmash:upper:j_idt295",widgetVar:"widget_formSmash_upper_j_idt295",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt304_j_idt310",{id:"formSmash:upper:j_idt304:j_idt310",widgetVar:"widget_formSmash_upper_j_idt304_j_idt310",target:"formSmash:upper:j_idt304:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Numerical analysis of an ill-posed Cauchy problem for a convection - Diffusion equationPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2007 (English)In: Inverse Problems in Science and Engineering, ISSN 1741-5977, E-ISSN 1741-5985, Vol. 15, no 3, 191-211 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2007. Vol. 15, no 3, 191-211 p.
##### Keyword [en]

Cauchy problem, Convection - diffusion equation, Ill-posed, Inverse problem, Singular value decomposition, Volterra integral operator
##### National Category

Engineering and Technology
##### Identifiers

URN: urn:nbn:se:liu:diva-50032DOI: 10.1080/17415970600557299OAI: oai:DiVA.org:liu-50032DiVA: diva2:270928
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1118",{id:"formSmash:j_idt1118",widgetVar:"widget_formSmash_j_idt1118",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1124",{id:"formSmash:j_idt1124",widgetVar:"widget_formSmash_j_idt1124",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1130",{id:"formSmash:j_idt1130",widgetVar:"widget_formSmash_j_idt1130",multiple:true});
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-12
##### In thesis

The mathematical and numerical properties of an ill-posed Cauchy problem for a convection - diffusion equation are investigated in this study. The problem is reformulated as a Volterra integral equation of the first kind with a smooth kernel. The rate of decay of the singular values of the integral operator determines the degree of ill-posedness. The purpose of this article is to study how the convection term influences the degree of ill-posedness by computing numerically the singular values. It is also shown that the sign of the coefficient in the convection term determines the rate of decay of the singular values. Some numerical examples are also given to illustrate the theory.

1. Numerical Solution of Ill-posed Cauchy Problems for Parabolic Equations$(function(){PrimeFaces.cw("OverlayPanel","overlay302609",{id:"formSmash:j_idt1398:0:j_idt1402",widgetVar:"overlay302609",target:"formSmash:j_idt1398:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1863",{id:"formSmash:j_idt1863",widgetVar:"widget_formSmash_j_idt1863",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1916",{id:"formSmash:lower:j_idt1916",widgetVar:"widget_formSmash_lower_j_idt1916",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1917_j_idt1919",{id:"formSmash:lower:j_idt1917:j_idt1919",widgetVar:"widget_formSmash_lower_j_idt1917_j_idt1919",target:"formSmash:lower:j_idt1917:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});