liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ice nucleation and phase behavior on oligo(ethylene glycol) and hydroxyl self-assembled monolayers: Simulations and experiments
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry .
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry .
Show others and affiliations
2006 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, Vol. 110, no 4, 1830-1836 p.Article in journal (Refereed) Published
Abstract [en]

The nucleation and phase behavior of ultrathin D2O-ice overlayers have been studied on oligo(ethylene glycol) (OEG)-terminated and hydroxyl self-assembled monolayers (SAMs) at low temperatures in ultrahigh vacuum. Infrared reflection-absorption spectroscopy (IRAS) is used to characterize the ice overlayers, the SAMs, and the interactions occurring between the ice and the SAM surfaces. Spectral simulations, based on optical models in conjunction with Maxwell Garnett effective medium theory, point out the importance of including voids in the modeling of the ice structures, with void fractions reaching 60% in some overlayers. The kinetics of the phase transition from amorphous-like to crystalline-like ice upon isothermal annealing at 140 K is found to depend on the conformational state of the supporting OEG SAM surface. The rate is fast on the helical OEG SAMs and slow on the corresponding all-trans SAMs. This difference in kinetics is most likely due to a pronounced D2O interpenetration and binding to the all-trans segments of the ethylene glycol portion of the SAM. No such penetration and binding was observed on the helical OEG SAM. © 2006 American Chemical Society.

Place, publisher, year, edition, pages
2006. Vol. 110, no 4, 1830-1836 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-50302DOI: 10.1021/jp056007qOAI: oai:DiVA.org:liu-50302DiVA: diva2:271198
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2011-01-11

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Östblom, MattiasValiokas, RamunasKonradsson, PeterSvensson, StefanLiedberg, Bo

Search in DiVA

By author/editor
Östblom, MattiasValiokas, RamunasKonradsson, PeterSvensson, StefanLiedberg, Bo
By organisation
The Institute of TechnologySensor Science and Molecular Physics Department of Physics, Chemistry and BiologyOrganic Chemistry
In the same journal
Journal of Physical Chemistry B
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 127 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf