liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of momentum relaxation on exciton spin dynamics in diluted magnetic semiconductor ZnMnSe CdSe superlattices
Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-7155-7103
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.ORCID iD: 0000-0002-6405-9509
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan.
Show others and affiliations
2005 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, Vol. 71, no 16Article in journal (Refereed) Published
Abstract [en]

cw hot photoluminescence (PL) complemented by transient PL measurements is employed to evaluate momentum and spin relaxation of heavy hole (HH) excitons in ZnMnSe CdSe superlattices. The rate of acoustic-phonon assisted momentum relaxation is concluded to be comparable to the total rate of exciton decay processes, about (2-3) × 1010 s-1, independent of applied magnetic fields. In magnetic fields when the Zeeman splitting ? of the exciton states is below the energy of the longitudinal optical (LO) phonon (?LO), a surprisingly strong suppression of spin relaxation rate from the bottom of the upper spin band is observed, which becomes comparable to that of momentum scattering via acoustic phonons. On the other hand, dramatic acceleration of the spin relaxation process by more than one order of magnitude is found for the excitons with a high momentum K. The findings are interpreted as being due to electron and hole spin flip processes via exchange interaction with isolated Mn2+ ions. Experimental evidence for the efficient interaction between the hot excitons and Mn impurities is also provided by the observation of spin flip transitions within Mn2+ - Mn2+ pairs that accompany the momentum relaxation of the hot HH excitons. In higher magnetic fields ?= ?LO, abrupt shortening of the spin flip time is observed. It indicates involvement of a new and more efficient spin relaxation process and is attributed to direct LO-assisted exciton spin relaxation with a subpicosecond spin relaxation time. © 2005 The American Physical Society.

Place, publisher, year, edition, pages
2005. Vol. 71, no 16
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-50340DOI: 10.1103/PhysRevB.71.165203OAI: oai:DiVA.org:liu-50340DiVA: diva2:271236
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-03-27

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Buyanova, Irina A.Chen, Weimin

Search in DiVA

By author/editor
Buyanova, Irina A.Chen, Weimin
By organisation
Functional Electronic MaterialsThe Institute of Technology
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 106 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf