liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structural organization and Zn2+ -dependent subdomain interactions involving autoantigenic epitopes in the Ring-B-box-coiled-coil (RBCC) region of Ro52
Linköping University, Department of Physics, Chemistry and Biology, Molecular Biotechnology . Linköping University, The Institute of Technology.
Department of Medicine, CMM L8:04, Karolinska Hospital, 5-171 76 Stockholm, Sweden.
Linköping University, Department of Physics, Chemistry and Biology, Molecular Biotechnology . Linköping University, The Institute of Technology.
Department of Medicine, CMM L8:04, Karolinska Hospital, 5-171 76 Stockholm, Sweden.
Show others and affiliations
2005 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, Vol. 280, no 39, 33250-33261 p.Article in journal (Refereed) Published
Abstract [en]

Ro52 is one of the major autoantigens targeted in the autoimmune disease Sjögren syndrome. By sequence similarity, Ro52 belongs to the RING-B-box-coiled-coil (RBCC) protein family. Disease-related antibodies bind Ro52 in a conformation-dependent way both in the coiled-coil region and in the Zn2+-binding Ring-B-box region. Primarily associated with Sjögren syndrome, Ro52 autoantibodies directed to a specific, partially structured epitope in the coiled-coil region may also induce a congenital heart block in the fetus of pregnant Ro52-positive mothers. To improve our understanding of the pathogenic effects of autoantibody binding to the Zn 2+-binding region, a multianalytical mapping of its structural, biophysical, and antigenic properties is presented. Structure content and ligand binding of subregions, dissected by peptide synthesis and subcloning, were analyzed by fluorescence and circular dichroism spectroscopy. A novel matrix-assisted laser desorption ionization time-of-flight mass spectrometry strategy for time-resolved proteolysis experiments of large protein domains was developed to facilitate analysis and to help resolve the tertiary arrangement of the entire RBCC subregion. The linker region between the RING and B-box motifs is crucial for full folding, and Zn2+ affinity of the RING-B-box region is further protected in the entire RBCC region and appears to interact with the coiled-coil region. Murine monoclonal antibodies raised toward the RING-B-box region were primarily directed toward the linker, further supporting a highly functional role for the linker in a cellular environment. Taken together with our previous analysis of autoantigenic epitopes in the coiled-coil region, localization of autoantigenic epitopes in Ro52 appears closely related to molecular functionalities. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc.

Place, publisher, year, edition, pages
2005. Vol. 280, no 39, 33250-33261 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-50421DOI: 10.1074/jbc.M503066200OAI: oai:DiVA.org:liu-50421DiVA: diva2:271317
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2010-01-18
In thesis
1. Structure-function studies on TRIM21/Ro52, a protein involved in autoimmune diseases
Open this publication in new window or tab >>Structure-function studies on TRIM21/Ro52, a protein involved in autoimmune diseases
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Several members of the tripartite motif (TRIM) protein family are involvedin antiviral activity and immunity and have been linked to severaldiseases. TRIM21, the main object of this thesis, is involved in Sjögrensyndrome (SS) and systemic lupus erythematosus (SLE), where patientsoften have autoantibodies against different epitopes on TRIM21. Duringthe course of this study a role of TRIM21 in regulation of proinflammatorycytokines and autoimmunity emerged. The aim of this thesis is to providea better understanding of the structure-function relationship of TRIM21.A conformational epitope in the coiled-coil domain of TRIM21 has beencharacterized, whose autoantibodies cause congenital heart block. A widerange of biophysical methods were employed to establish a model of theprotein domain arrangement of TRIM21, and functional implications werederived. By sequence comparisons, TRIM proteins were classified into threesubgroups, sharing a conserved amphipathic helix in the region, linkingthe conserved N-terminal Zn2+-binding domains RING and B-box, calledthe RING-B-box linker (RBL). A structural dependence of this region on theRING has been observed and a model of the RING-RBL was derived frombioinformatics and proteolysis data. Anti-RING-RBL antibodies inhibit theE3 ligase activity of TRIM21 in ubiquitination. Interferon regulatory factors(IRFs), the substrate for TRIM21-dependent ubiquitination could thereforeretain their high cellular levels after stress-induced inflammation, increasingthe susceptibility to SS and SLE. According to NMR data, the antibodiesbind to the Zn2+-binding loop regions of the RING, which usually bind tothe E2 conjugating enzyme. Antibodies against the C-terminus of the RBLregion do not inhibit the E3 ligase activity.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2009. 89 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1272
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
urn:nbn:se:liu:diva-52744 (URN)978-91-7393-538-8 (ISBN)
Public defence
2009-10-30, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 13:15 (English)
Opponent
Supervisors
Available from: 2010-01-18 Created: 2010-01-12 Last updated: 2010-01-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Hennig, JanoschAndrésen, CeciliaSunnerhagen, Maria

Search in DiVA

By author/editor
Hennig, JanoschAndrésen, CeciliaSunnerhagen, Maria
By organisation
Molecular Biotechnology The Institute of Technology
In the same journal
Journal of Biological Chemistry
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 152 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf