liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the structure and desorption dynamics of DNA bases adsorbed on gold: A temperature-programmed study
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
Department of Chemistry, Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208.
Department of Chemistry, Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208.
2005 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 109, no 31, 15150-15160 p.Article in journal (Refereed) Published
Abstract [en]

The structure and desorption dynamics of mono- and multilayer samples of adenine, cytosine, guanine, and thymine on polycrystalline gold thin films are studied using temperature-programmed desorption-infrared reflection absorption spectroscopy (TPD-IRAS) and temperature-programmed desorption-mass spectroscopy (TPD-MS). It is shown that the pyrimidines, adenine and guanine, adsorb to gold in a complex manner and that both adhesive (adenine) and cohesive (guanine) interactions contribute the apparent binding energies to the substrate surface. Adenine displays at least two adsorption sites, including a high-energy site (210°C, ~136 kj/mol), wherein the molecule coordinates to the gold substrate via the NH2 group in an sp3-like, strongly perturbed, nonplanar configuration. The purines, cytosine and thymine, display a less complicated adsorption/desorption behavior. The desorption energy for cytosine (160°C, ~122 kJ/mol) is similar to those obtained for adenine and guanine, but desorption occurs from a single site of dispersed, nonaggregated cytosine. Thymine desorbs also from a single site but at a significantly lower energy (100°C, ~104 kJ/mol). Infrared data reveal that the monolayer architectures discussed herein are structurally very different from those observed for the bases in the bulk crystalline state. It is also evident that both pyrimidines and purines adsorb on gold with the plane of the molecule in a nonparallel orientation with respect to the substrate surface. The results of this work are discussed in the context of improving the understanding of the design of capturing oligonucleotides or DNA strands for bioanalytical applications, in particular, for gold nanoparticle-based assays. © 2005 American Chemical Society.

Place, publisher, year, edition, pages
2005. Vol. 109, no 31, 15150-15160 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-50440DOI: 10.1021/jp051617bOAI: oai:DiVA.org:liu-50440DiVA: diva2:271336
Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-12

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Östblom, MattiasLiedberg, Bo

Search in DiVA

By author/editor
Östblom, MattiasLiedberg, Bo
By organisation
The Institute of TechnologySensor Science and Molecular Physics
In the same journal
Journal of Physical Chemistry B
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 90 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf