liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Regional stiffening of the mitral valve anterior leaflet in the beating ovine heart
Stanford University. USA.
Stanford University, USA.
Stanford University, USA.
Stanford University, USA.
Show others and affiliations
2009 (English)In: Journal of Biomechanics, ISSN 0021-9290, Vol. 42, no 16, 2697-2701 p.Article in journal (Refereed) Published
Abstract [en]

Left atrial muscle extends into the proximal third of the mitral valve (MV) anterior leaflet and transient tensing of this muscle has been proposed as a mechanism aiding valve closure. If such tensing occurs, regional stiffness in the proximal anterior mitral leaflet will be greater during isovolumic contraction (IVC) than isovolumic relaxation (IVR) and this regional stiffness difference will be selectively abolished by β-receptor blockade. We tested this hypothesis in the beating ovine heart. Radiopaque markers were sewn around the MV annulus and on the anterior MV leaflet in 10 sheep hearts. Four-dimensional marker coordinates were obtained from biplane videofluoroscopy before (CRTL) and after administration of esmolol (ESML). Heterogeneous finite element models of each anterior leaflet were developed using marker coordinates over matched pressures during IVC and IVR for CRTL and ESML. Leaflet displacements were simulated using measured left ventricular and atrial pressures and a response function was computed as the difference between simulated and measured displacements. Circumferential and radial elastic moduli for ANNULAR, BELLY and EDGE leaflet regions were iteratively varied until the response function reached a minimum. The stiffness values at this minimum were interpreted as the in vivo regional material properties of the anterior leaflet. For all regions and all CTRL beats IVC stiffness was 40–58% greater than IVR stiffness. ESML reduced ANNULAR IVC stiffness to ANNULAR IVR stiffness values. These results strongly implicate transient tensing of leaflet atrial muscle during IVC as the basis of the ANNULAR IVC–IVR stiffness difference.

Place, publisher, year, edition, pages
2009. Vol. 42, no 16, 2697-2701 p.
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-50586DOI: 10.1016/j.jbiomech.2009.08.028OAI: diva2:271677
Available from: 2009-10-13 Created: 2009-10-13 Last updated: 2010-01-15

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Karlsson, Matts
By organisation
Applied Thermodynamics and Fluid Mechanics The Institute of Technology
In the same journal
Journal of Biomechanics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 21 hits
ReferencesLink to record
Permanent link

Direct link